Содержание
- 1 Характеристики фреона R410a на линии насыщения
- 2 Как узнать, какой хладагент используется в кондиционерах?
- 3 R-134a (Тетрафторэтан, HFC-134a)
- 4 4 Основные преимущества и недостатки
- 5 Характеристики R410a на линии насыщения
- 6 Что такое фреон R410a
- 7 Дополнение о вреде R22
- 8 7 Схема традиционного холодильного цикла
- 9 Общее описание R410a
- 10 R-1234yf (Тетрафторпропен, HFO-1234yf)
- 11 Взаимодействие R410a с другими материалами
- 12 Отличия R22 и R410a
- 13 Особенности применения
- 14 Физические свойства R410a
- 15 История происхождения
- 16 Монтаж оборудования на R410a
- 17 Таблица давления и кипения
- 18 1 Краткое описание
Характеристики фреона R410a на линии насыщения
Насыщенная жидкость
Температура | Давление | Плотность | Энтальпия | Энтропия |
---|---|---|---|---|
° С | насыщения, МПа | кг/м3 | кДж/кг | кДж/(кг*К) |
-50 | 1.123 | 1339.761 | 131.4 | 0.726 |
-45 | 1.417 | 1325.036 | 137.8 | 0.754 |
-40 | 1.77 | 1309.941 | 144.2 | 0.782 |
-35 | 2.191 | 1294.45 | 150.7 | 0.809 |
-30 | 2.689 | 1278.534 | 157.3 | 0.837 |
-25 | 3.273 | 1262.162 | 164 | 0.864 |
-20 | 3.954 | 1245.297 | 170.9 | 0.891 |
-15 | 4.743 | 1227.897 | 177.9 | 0.918 |
-10 | 5.651 | 1209.914 | 185.1 | 0.945 |
-5 | 6.69 | 1191.292 | 192.5 | 0.973 |
7.872 | 1171.968 | 200 | 1 | |
5 | 9.211 | 1151.863 | 207.7 | 1.028 |
10 | 10.719 | 1130.887 | 215.7 | 1.055 |
15 | 12.41 | 1108.928 | 223.9 | 1.084 |
20 | 14.299 | 1085.849 | 232.5 | 1.112 |
25 | 16.399 | 1061.481 | 241.3 | 1.141 |
30 | 18.725 | 1035.603 | 250.5 | 1.171 |
35 | 21.293 | 1007.926 | 260.2 | 1.202 |
40 | 24.116 | 978.057 | 270.4 | 1.233 |
45 | 27.211 | 945.435 | 281.2 | 1.266 |
50 | 30.592 | 909.218 | 292.8 | 1.301 |
Насыщенный пар
Температура | Давление | Плотность | Энтальпия | Энтропия | Теплота |
---|---|---|---|---|---|
° С | насыщения, МПа | кг/м3 | кДж/кг | кДж/(кг*К) | парообразования, кДж/кг |
-50 | 1.122 | 4.526 | 401.5 | 1.936 | 270.1 |
-45 | 1.415 | 5.616 | 404.6 | 1.924 | 266.8 |
-40 | 1.767 | 6.909 | 407.5 | 1.913 | 263.4 |
-35 | 2.187 | 8.435 | 410.5 | 1.902 | 259.8 |
-30 | 2.683 | 10.224 | 413.3 | 1.891 | 256 |
-25 | 3.265 | 12.312 | 416.1 | 1.882 | 252 |
-20 | 3.944 | 14.738 | 418.8 | 1.872 | 247.8 |
-15 | 4.73 | 17.546 | 421.3 | 1.863 | 243.4 |
-10 | 5.635 | 20.785 | 423.8 | 1.854 | 238.7 |
-5 | 6.67 | 24.511 | 426.1 | 1.846 | 233.6 |
7.849 | 28.79 | 428.3 | 1.837 | 228.3 | |
5 | 9.184 | 33.696 | 430.2 | 1.829 | 222.5 |
10 | 10.688 | 39.317 | 432 | 1.821 | 216.3 |
15 | 12.375 | 45.759 | 433.6 | 1.812 | 209.6 |
20 | 14.26 | 53.149 | 434.8 | 1.803 | 202.4 |
25 | 16.357 | 61.643 | 435.8 | 1.794 | 194.5 |
30 | 18.681 | 71.44 | 436.4 | 1.785 | 185.9 |
35 | 21.247 | 82.798 | 436.6 | 1.774 | 176.4 |
40 | 24.07 | 96.062 | 436.2 | 1.763 | 165.9 |
45 | 27.165 | 111.722 | 435.2 | 1.75 | 154 |
50 | 30.549 | 130.504 | 433.4 | 1.736 | 140.6 |
Температура кипения фреона 410
Температура, ° С | Давление | Температура, ° С | Давление |
---|---|---|---|
+50 | 29.5 | -10 | 4.72 |
+45 | 26.2 | -15 | 3.85 |
+40 | 22.9 | -20 | 2.98 |
+35 | 19.78 | -25 | 2.35 |
+30 | 16.65 | -30 | 1.71 |
+25 | 15 | -35 | 1.22 |
+20 | 13.35 | -40 | 0.73 |
+15 | 11.56 | -45 | 0.25 |
+10 | 9.76 | -50 | 0.08 |
+5 | 8.37 | -55 | -0.22 |
6.98 | -60 | -0.36 | |
-5 | 5.85 | -65 | -0.51 |
Как узнать, какой хладагент используется в кондиционерах?
Если вы не знаете, на каком хладагенте работает ваш кондиционер, самый простой способ узнать это – посмотреть на шильдике. Он находится с правой стороны внутреннего и наружного блоков (см. фото). Чаще всего тип и вес хладагента указан на внешнем блоке.
Тип хладагента на шильдиках наружного и внутреннего блоков кондиционера.
Если шильдики не сохранились или выцвели – ищите инструкцию или мануал в интернете по модели кондиционера. Если не знаете ее, то придется импровизировать. Нужно будет снять корпус с наружного блока и посмотреть маркировку компрессора. По ней определить, с каким фреоном он работает.
Иногда компрессоры могут работать с разными типами хладагентов. В таком случае нельзя определить, каким заправлен ваш кондиционер. Придется заправлять его полностью, по стандарту и менять масло.
Последние публикации
R-134a (Тетрафторэтан, HFC-134a)
Этот хладагент вытеснил большинство аналогов R12 и R22. Он однокомпонентный, поэтому при утечке его можно дозаправить, а не менять полностью. У него нулевой потенциал разрушения озонового слоя, а ПГП равен 1430. Это на 40% меньше чем у CFC-12 и на 21% меньше чем у HCFC-22. Тетрафторэтан выпускают под торговыми марками:
- FORANE 134a;
- HFC-134a;
- SUVA-134a;
- Genetron-134a;
- Dymel-134a;
- Solkane-134a;
- Halocarbon-134a.
Хладагент R-134a подпадает под положения поправок к Монреальскому протоколу. Во многих странах своя собственная политика относительно его использования. Одни ограничивают его применение, другие отказываются совсем. В некоторых государствах есть ограничения на использование фреона R134a в климатической технике определенной мощности.
R134a называют автомобильным хладагентом. Он используется в автокондиционерах вместо R12. Тетрафторэтан не горючий и не токсичный. Благодаря характеристикам HFC-134a, его широко применяют в:
- Бытовых холодильниках;
- Чиллерах;
- Кондиционерах;
- Тепловых насосах.
Начиная с 2021 года в большинстве стран запрещено производить или импортировать оборудование на R134a. Но старая техника может на нем работать. Поэтому производство и импорт фреона допускается.
Баллоны хладагента R134a китайского бренда Ice Loong.
4 Основные преимущества и недостатки
Современный хладагент R-410A относится к группе специфических гидрофторуглеродов. Его состав рассматривается всемирными организациями как озонобезопасный. Касательно минимального температурного скольжения — этот параметр приравнивается к 0,15 К, благодаря чему он входит в категорию однокомпонентных хладонов. Широкий спектр применения фреона R-410A обусловлен тем, что он обладает множественными преимуществами:
- Если из-за поломки газ вышел из сосуда, то его можно легко восполнить без потери качества самого хладагента.
- Перед производителями открываются более широкие горизонты в сфере уменьшения энергопотребления техники.
- Нет необходимости устанавливать мощный, дорогостоящий компрессор, так как теплообменник обладает высоким уровнем удельной холодопроизводительности.
- Существенно возросла эффективность работы систем, так как фреон R-410A обладает низкой вязкостью и хорошей теплопроводностью.
Отрицательных сторон не так уж и много, но все они должны быть учтены не только опытными мастерами, но и обычными пользователями, которые используют бытовую технику с фреоном. К основным недостаткам относятся следующие:
- Из-за разности давления по отношению к нагнетанию и всасыванию фреона уровень КПД компрессора может быть снижен.
- Профессионалы отмечают быстрый износ подшипников, который обусловлен высоким рабочим давлением в системе.
- Использование фреона влияет на то, что корпус бытовой техники должен обладать повышенной герметичностью. Итоговая толщина стенок медных труб рабочей магистрали должна быть больше, нежели для привычного хладагента R22. Минимальный показатель должен находиться в пределах 0,9 мм. Стоит отметить, что большой процент содержания меди ведёт к существенному удорожанию эксплуатируемой системы.
- В кондиционерах используется высококачественное полиэфирное масло, которое стоит гораздо дороже, нежели минеральное.
- Этот вид хладагента является несовместимым с элементами климатического оборудования. Правило касается тех деталей, которые изготовлены из эластомеров и чувствительных к пентафторэтану, дифторметану материалов.
Характеристики R410a на линии насыщения
Темпе-ратура, C | Насыщенная жидкость | Насыщенный пар | |||||||
---|---|---|---|---|---|---|---|---|---|
Давление насы-щения, 105 Па |
Плотность, кг/м3 | Удельная энтальпия, кДж/кг | Удельная энтропия, кДж/(кг*К) |
Давление насы-щения, 105 Па |
Плот-ность, кг/м3 |
Удельная энтальпия, кДж/кг | Удельная энтропия, кДж/(кг*К) | Удельная теплота парообра-зования, кДж/кг | |
-50 | 1,123 | 1339,761 | 131,4 | 0,726 | 1,122 | 4,526 | 401,5 | 1,936 | 270,1 |
-45 | 1,417 | 1325,036 | 137,8 | 0,754 | 1,415 | 5,616 | 404,6 | 1,924 | 266,8 |
-40 | 1,770 | 1309,941 | 144,2 | 0,782 | 1,767 | 6,909 | 407,5 | 1,913 | 263,4 |
-35 | 2,191 | 1294,45 | 150,7 | 0,809 | 2,187 | 8,435 | 410,5 | 1,902 | 259,8 |
-30 | 2,689 | 1278,534 | 157,3 | 0,837 | 2,683 | 10,224 | 413,3 | 1,891 | 256,0 |
-25 | 3,273 | 1262,162 | 164,0 | 0,864 | 3,265 | 12,312 | 416,1 | 1,882 | 252,0 |
-20 | 3,954 | 1245,297 | 170,9 | 0,891 | 3,944 | 14,738 | 418,8 | 1,872 | 247,8 |
-15 | 4,743 | 1227,897 | 177,9 | 0,918 | 4,730 | 17,546 | 421,3 | 1,863 | 243,4 |
-10 | 5,651 | 1209,914 | 185,1 | 0,945 | 5,635 | 20,785 | 423,8 | 1,854 | 238,7 |
-5 | 6,690 | 1191,292 | 192,5 | 0,973 | 6,670 | 24,511 | 426,1 | 1,846 | 233,6 |
7,872 | 1171,968 | 200,0 | 1,000 | 7,849 | 28,79 | 428,3 | 1,837 | 228,3 | |
5 | 9,211 | 1151,863 | 207,7 | 1,028 | 9,184 | 33,696 | 430,2 | 1,829 | 222,5 |
10 | 10,719 | 1130,887 | 215,7 | 1,055 | 10,688 | 39,317 | 432,0 | 1,821 | 216,3 |
15 | 12,410 | 1108,928 | 223,9 | 1,084 | 12,375 | 45,759 | 433,6 | 1,812 | 209,6 |
20 | 14,299 | 1085,849 | 232,5 | 1,112 | 14,260 | 53,149 | 434,8 | 1,803 | 202,4 |
25 | 16,399 | 1061,481 | 241,3 | 1,141 | 16,357 | 61,643 | 435,8 | 1,794 | 194,5 |
30 | 18,725 | 1035,603 | 250,5 | 1,171 | 18,681 | 71,44 | 436,4 | 1,785 | 185,9 |
35 | 21,293 | 1007,926 | 260,2 | 1,202 | 21,247 | 82,798 | 436,6 | 1,774 | 176,4 |
40 | 24,116 | 978,057 | 270,4 | 1,233 | 24,070 | 96,062 | 436,2 | 1,763 | 165,9 |
45 | 27,211 | 945,435 | 281,2 | 1,266 | 27,165 | 111,722 | 435,2 | 1,750 | 154,0 |
50 | 30,592 | 909,218 | 292,8 | 1,301 | 30,549 | 130,504 | 433,4 | 1,736 | 140,6 |
Что такое фреон R410a
Информацию о том, что хладагент r 410a стал заменой R22 нельзя воспринимать буквально. Технические характеристики фреонов различаются, сплит-систему спроектированную под один тип газовой смеси, не заполняют другим составом. Хладон r 410a разработан в 1991 году компанией Allied Signal. Спустя 5 лет появились первые кондиционеры, работающие с новым хладоном. Целью разработчиков было заменить устаревшие газовые смеси, содержащие хлор. Соединения группы CFC (хлорфторуглеродные) при попадании в атмосферу разрушали озоновый слой, усиливая парниковый эффект. Новый фреон соответствует всем требованиям Монреальского протокола. Его влияние на истощение защитного слоя Земли равно нулю.
Состав стабилен, инертен к металлам. Не имеет цвета, обладает легким запахом эфира. Под действием открытого огня разлагается на токсичные составляющие.
Дополнение о вреде R22
Хладоны 12, 22 были разработаны компанией DuPont. Это были недорогие и эффективные хладагенты, быстро завоевавшие широкое признание в «рефрижераторных» кругах.
Оборотная стороны дешевизны и популярности заключается в том, что производить подобную продукцию под другим названием («Фреон» – это торговая марка, принадлежащая Дюпон), создав конкуренцию изобретателям.
Заметив снижение продаж и падение доходов, DuPont вынуждена была принимать некоторые меры для выживания на конкурентном рынке.
Спустя время появились сведения, что хлор, содержащийся в доступных и простых в производстве холодильных агентах, способствует разрушению озонового слоя, защищающего Землю о вредоносного космического излучения. Последовали запретительные меры, а сообществу холодильщиков были предложены более дорогие и сложные составы. Но они не содержали вредного галогена.
Сложно понять, правда это или нет, но есть сведения, что информация о вреде R22 и ему подобных вместе с инициацией запрета производства и использования исходила от той же DuPont.
7 Схема традиционного холодильного цикла
Именно циркуляция обеспечивает качественное охлаждение не только кондиционера, но и любого другого холодильного оборудования. Кипение и конденсация фреона происходит в замкнутой системе. Эти два процесса имеют свои особенности. Тщательно изучив таблицу кипения фреона можно понять, что этот этап происходит при низком давлении, а вот конденсация — при высоком давлении и температуре. Этот этап работы принято называть холодильным циклом компрессионного типа. Равномерное движение хладагента и повышение давления до требуемых показателей просто невозможно без качественного компрессора. Мощность этого элемента должна соответствовать всем требованиям.
Тот, кто решил самостоятельно дозаправить систему используемого оборудования фреоном, должен знать поэтапную схему компрессионного цикла:
- Когда вещество выходит из испарителя, оно переходит в состояние пара с низким давлением и такой же температурой.
- На следующем этапе пар поступает в компрессионную установку, которая способствует повышению его давления до 24 атмосфер. Специалисты утверждают, что температура кипения фреона 410А находится в пределах -52˚С.
- Заправленный фреон постепенно охлаждается и конденсируется (переходит в жидкое состояние). Стоит отметить, что этот процесс происходит благодаря воздушным или же водяным охладителям (всё зависит исключительно от разновидности агрегата).
- После выхода из конденсатора хладагент попадает в специальный испаритель, где после снижения давления начинает потихоньку кипеть и переходит уже в газообразное состояние. Всё тепло из воздуха забирает фреон, который находится в испарителе.
- В завершении цикла хладагент направляется в компрессор, где все этапы повторяются.
Специалисты отмечают тот факт, что абсолютно все холодильные цикли состоят всего из двух областей — с высоким и низким уровнем давления. Благодаря существующей разнице происходит своеобразное преобразование фреона, а также его длительная транспортировка по рабочей системе. Чем выше будет уровень давления, тем больше итоговая температура кипения.
Общее описание R410a
R410a повсеместно называется как преимущественный долгосрочный хладагент-заменитель для R22 , но он является также альтернативой для R13B1. Эта смесь хладагента представляет собой околоазеотроп с очень низким температурным глайдом.
Существенным отличием от R22 является более высокое давление. Так R410a достигает давления 25 бар уже при температуре сжижения примерно 42°C, R22 напротив, только примерно при 62°C. Большим преимуществом R410a является очень высокая объемная холодопроизводительность, которая может быть до 50% выше чем у R22. Поэтому могут применяться более мелкие компоненты установки, благодаря чему – по сравнению с R22 – можно построить более компактную установку.
Компоненты холодильной установки, как например, компрессоры, должны быть рассчитаны на более высокое давление. Такая разработка уже ведется полным ходом.
Из-за более высоких рабочих давлений R410a не пригоден для переналадки существующих установок с R22. Для подобной переналадки методом ретрофита мы рекомендуем после детальной проверки возможно Solkane 407C.
Возможности замены для хладагента R410a имеются в кондиционерах, тепловых насосах, холодильных складских камерах, для производственного и промышленного охлаждения и при замене R13B1 в диапазоне низких температур. Методы ретрофита для R13B1 уже успешно проводились.
R-1234yf (Тетрафторпропен, HFO-1234yf)
Фреон R-1234yf – один из лучших аналогов R-134a. Им заправляют автомобильные кондиционеры, устанавливаемые на моделях, выпускаемых после 2015 года. Но есть исключения – в некоторых странах производят автомобили с R-134a до сих пор.
По своим характеристикам и холодопроизводительности тетрафторпропен аналогичен тетрафторэтану. У них одинаковый ОРП (ODP), равный 0. Но его ПГП (GWP) в 360 раз ниже и составляет 4 единицы.
Сейчас R1234yf стоит дороже R134a из-за низкого спроса на него. Поэтому многие заправляют HFC-134a вместо HFO-1234yf. Иногда автокондиционеры адаптируют под старый хладагент, в некоторых случаях ничего не меняют. Как это отразится на работе оборудования – неизвестно.
В перспективе, цена на фреон R-1234yf будет снижаться. Он станет более доступным и вытеснит хладон R134a. его будут применять в:
- Бытовых и промышленных кондиционерах;
- Холодильном оборудовании;
- Чиллерах;
- Автомобильных кондиционерах.
Небольшие баллончики хладагента R1234yf для заправки автомобильных кондиционеров.
Взаимодействие R410a с другими материалами
Имеется совместимость с применяемыми обычно в холодильном машиностроении металлами, такими как сталь, медь, алюминий и латунь. Отказаться следует только от цинка, свинца, магния и сплавов алюминия с содержанием магния более 2 % массы.
Лишь незначительное набухание происходит при воздействии R410a на следующие пластмассы или эластомеры: полиамид (PA), фенольная смола, политетрафторэтилен (PTFE), полиацетал (POM), хлорпренкаучук (CR) и гидрированный акрилнитрил-бутадиенкаучук (HNBR). Так как при отдельных пласмассах и эластомерах могут иметься различные формулировки, то мы рекомендуем в каждом случае перед применением провести испытания. Здесь также необходимо учесть возможное влияние смазочного вещества. Типы фторкаучука (FKM) не рекомендуются.
Отличия R22 и R410a
По сравнению с фреоном r22, хладагент r410a имеет ряд преимуществ и недостатков. Они обусловлены его техническими характеристиками, физическими свойствами и сложностью производства.
- Имеет низкую стоимость;
- К 2020 году должен быть выведен из оборота странами, ратифицировавшими Монреальский протокол;
- Является однокомпонентным, в случае утечки возможна дозаправка независимо от количества потерянного хладагента;
- Не сложен в производстве, благодаря чему есть много производителей по всему миру.
Фреон r410a:
- Дороже хладагента R-22;
- Не токсичен, пожаробезопасен;
- Двухкомпонентный, в случае утечки большого количества из системы, ее нужно очистить от остатков и заправлять заново;
- Не разрушает озоновый слой;
- Имеет более высокие рабочие давления, оборудование должно быть более прочным. Оно дорогое, но надежное.
Отдельно стоит сказать про влияние на париковый эффект. Потенциал глобального потепления у хладагента r410a на 32,3% больше, чем у r22. Но если все оборудование полностью перейдет на него, то получится интересный эффект.
Так как хладопроизводительность фреона r410a лучше, его нужно меньше. Было подсчитано, что при переводе системы с 22-го хладагента на 410-ый, ее влияние на парниковый эффект уменьшалось в среднем на 11-13%. С точки зрения экологии, R22 проигрывает.
Что касается энергоэффективности, хладагент 410а лучше 22-го. Как показало исследование, опубликованное в International Journal of Engineering Research & Technology (Международный журнал инженерных исследований и технологий), разница составляет около 5-10% (см. рис).
Результаты исследования энергоэффективности хладагентов r410a, r22 и r404a
Особенности применения
Хладон одинаково эффективен в сплит системах и чиллерах с винтовым компрессором и водяным конденсатором. Сжиженный газ высокого давления требует специальных узлов и деталей. Ведется конструктивная разработка новых моделей климатической и холодильной техники. Технические характеристики позволяют использовать его в устройствах:
- центробежные компрессоры;
- затопленные испарители;
- насосные холодильные агрегаты.
Новый фреон нашел применение в системах кондиционирования, бытовых теплонасосных установках. Смесь с азеотропными свойствами подходит для оборудования с теплообменниками непосредственного испарения и затопленного типа. Благодаря высокой плотности хладон используют в бытовых и промышленных установках:
- транспортные охладительные системы;
- установки кондиционирования воздуха в офисах, общественных зданиях, промышленных объектах;
- бытовые холодильники;
- торговое и пищевое холодильное оборудование.
Совместно с фреоном 410 a применяется синтетическое (полиэфирное) масло. Недостаток продукта – высокая гигроскопичности. При дозаправке исключается контакт с влажными поверхностями. Рекомендуется применение продукции марок PLANETELF ACD 32, 46, 68, 100, Biltzer BSE 42, Mobil EAL Arctic. Минеральные масла не совместимы с хладагентом, их применение испортит компрессор.
Физические свойства R410a
Параметр |
Единица измерения |
Значение | ||
---|---|---|---|---|
При -15°С (насыщ.жидк.) |
При 25°С (насыщ.жидк.) |
При 25°С (насыщ.пар) |
||
Химическая формула | — |
CH2F2+CHF2CF3 R32+R125 50%+50% (масс.) |
||
Молярная масса | кг/кмоль | 72.6 | ||
Точка кипения при атм. далении (101кПа) | °С | -51.6 | ||
Критическая температура | °С | 70.2 | ||
Критическое давление | МПа | 4.77 | ||
Вязкость | мПа·с | 0.200 | 0.122 | 0.0135 |
Теплопроводность | Вт/(м·К) | 0.108 | 0.087 | 0.0165 |
Средняя уд.теплоемкость | кДж/(кг·К) | — | 1.692 | 1.346 |
Отношение cp/cv | — | — | — | 1.55 |
Плотность | кг/м3 | — | 1061 | 65.56 |
Энтальпия испарения | кДж/кг | — | 186.4 | — |
Границы взравоопасности в воздухе при 25°С и атмосферном давлении (101кПа): отсутствуют.
История происхождения
В 1989 году был подписан Монреальский протокол по веществам, разрушающим озоновый слой. Под него попадали такие хладагенты как R22 и R13B, как озоноразрушающие (из-за присутствия в их составе хлора). Для их замены был разработан новый фреон R-410A.
Изначально его использовали для замены устаревших хладагентов (если позволяли характеристики систем). Впоследствии было разработано оборудование, которое могло работать на хладагенте r410a, но не на r22 или r13b. Оно отличалось компактностью и низким энергопотреблением.
За счет этого новые модели стали пользоваться популярностью, хоть и были несколько дороже. Когда производители хладагентов снизили стоимость нового вида фреона, на него перешли изготовители бытовой и коммерческой холодильной и кондиционерной техники. Сейчас хладагент в некоторых сферах используется чаще аналогов, таких как r134a, r404a, r600a, r407c и r507.
После разработки хладагента, многие производители начали патентовать собственные торговые марки. Сейчас полноценными аналогами R410a являются:
- SUVA 9100;
- AZ 20;
- Forane 410a;
- Solkane 410.
Торговая марка Genetron AZ 20 — полный аналог R410a
Монтаж оборудования на R410a
При установке оборудования на R410A необходимо придерживаться следующих основных рекомендаций (аналогичных для R407C):
-
не допускать попадания загрязнений в гидравлический контур;
-
при пайке трубопроводов они должны быть заполнены инертным или слабовзаимодействующим газом, например, азотом с низким содержанием влаги;
-
особенно тщательно производить вакуумирование;
-
дозаправку хладагента осуществлять исключительно в жидкой фазе.
Приведем несколько рекомендаций по выполнению вакуумирования, направленного на полное удаление из контура воздуха и влаги. Для того чтобы перевести воду из жидкого в газообразное состояние без нагревания, потребуется уменьшить давление в контуре. Чем ниже температура контура (наружного воздуха), тем меньше давление, при котором начнется испарение воды.
Давление испарения воды при различных температурах воздуха:
Температура, °C | Давление, Мбар |
---|---|
15 | 9 |
10 | 12 |
15 | 17 |
20 | 23 |
25 | 42 |
Следовательно, при вакуумировании остаточное давление в контуре должно быть таким, чтобы температура испарения для этого давления была ниже температуры наружного воздуха
Особое внимание следует уделить выбору инструмента. Вакуумный насос может быть как одно-, так и двухступенчатым, но производительность его должна быть не ниже 4–8 м3/ч для систем холодопроизводительностью до 11 кВт и 8–15 м3/ч для более мощных систем. Преимущество двухступенчатых насосов заключается в возможности достижения более низкого остаточного давления
Для предотвращения попадания минерального масла из насоса в контур холодильной установки он должен быть оснащен специальным клапаном. Манометрический коллектор должен быть предназначен для R410A, т.е. иметь шкалу давление/температура соответствующую этому хладагенту, а также увеличенные диаметры портов для подключения гибких шлангов (ввиду существенных различий термодинамических характеристик R410A и R22, R407C)
Преимущество двухступенчатых насосов заключается в возможности достижения более низкого остаточного давления. Для предотвращения попадания минерального масла из насоса в контур холодильной установки он должен быть оснащен специальным клапаном. Манометрический коллектор должен быть предназначен для R410A, т.е. иметь шкалу давление/температура соответствующую этому хладагенту, а также увеличенные диаметры портов для подключения гибких шлангов (ввиду существенных различий термодинамических характеристик R410A и R22, R407C).
Очень важно, что измерение глубины вакуума с помощью манометра низкого давления (до 17 бар) на манометрическом коллекторе недопустимо, поскольку не обеспечивает достаточной точности. Необходим специальный манометр для измерения вакуума, только с его помощью можно правильно измерить остаточное давление и убедиться в отсутствии влаги в контуре. В целом, если вы следуете этим несложным рекомендациям и работаете профессиональным инструментом, применяя его по назначению, то установка и сервисное обслуживание оборудования на R410A не вызовут сложностей, а пользователи смогут оценить надежность и высокую энергетическую эффективность новых систем кондиционирования
В целом, если вы следуете этим несложным рекомендациям и работаете профессиональным инструментом, применяя его по назначению, то установка и сервисное обслуживание оборудования на R410A не вызовут сложностей, а пользователи смогут оценить надежность и высокую энергетическую эффективность новых систем кондиционирования.
Таблица давления и кипения
Рабочее давление хладагента пропорционально нагрузке на компрессор. Кроме этого показателя на эффективность работы агрегата влияет разность давления на стороне всасывания и нагнетания. Обе характеристики хладона 410a имеют высокие значения. При одинаковой производительности кондиционеры с этим типом фреона стоят дороже моделей с другими хладагентами. Повышение цены связано с затратами, необходимыми для изготовления более прочных узлов и деталей.
Таблица рабочего давления фреона 410 в кондиционере представляется в виде номограммы. Она составляется по нескольким показателям:
- температура внутри помещения;
- температура окружающей среды;
- рабочее давление всасывания.
Реальный напор хладона меняется несколько раз в сутки. Его значение зависит от колебаний температуры и выбранного режима. В обычных условиях используемый газ кипит при отрицательных показателях термометра. Давление, создаваемое компрессором, позволяет изменить точку кипения.
Таблицу кипения фреона r410a в зависимости от давления используют при проверке на утечку.
T, C | -5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | |
P,бар | 5,85 | 7 | 8,37 | 9,76 | 11,56 | 13,35 | 15 | 16,65 | 19,8 | 22,9 | 26,2 |
1 Краткое описание
Чтобы кондиционеры и холодильники слаженно работали, а также сохранялся цикл испарения и конденсации, необходимо поддерживать оптимальный уровень давления во всей системе. В охлаждающих агрегатах могут быть использованы совершенно разные виды фреона, которые отличаются между собой не только химическим составом, но и многими другими характеристиками. Но чаще всего производители применяют следующие типы этого вещества:
- R22.
- 134A.
- 407.
- R-410A.
- 404A.
Итоговая температура кипения у всех этих видов имеет разные показатели. Опытные мастера прекрасно знают, что перед заправкой того или иного холодильного аппарата необходимо учесть тип охлаждающей жидкости, которая ранее использовалась в работе.
Универсальный фреон R-410A был разработан ещё в 1991 году, а уже через 5 лет в продаже появились первые кондиционеры, в которых использовалась эта жидкость. Таким образом, производители хотели заменить давно устаревшие газовые смеси, которые содержали опасный для человека хлор. Когда происходила утечка этой жидкости и испарения попадали в атмосферу, то изначально страдал озоновый слой, что только усиливало неблагоприятный парниковый эффект. В то время как современный вид фреона полностью соответствует всем требованиям.