Мегаомметр — друг инженера-электрика

Как проверить мегаомметр на исправность

Осуществить проверку мегаомметра на исправность необходимо по следующему способу. К выводам устройства сделать подключение проводов и закоротить выходы. Потом подать энергию и проследить за результатами. Исправный прибор покажет ноль. Потом разъединить и попробовать заново. Во второй раз должна появиться бесконечность. Это показатель — воздушный промежуток.

Неисправности мегаомметра

Неисправности заключаются в отсутствии горения индикаторного табло измерительных результатов в момент включения омметра питания. Также они заключаются в нестабильности измерительных результатов. Причина этих явлений в перегорании предохранителя, неисправности кабеля сетевого питания, ненадежном заземлении и ненадежном контактировании с измерительным объектом.

Неправильная эксплуатация прибора и заводской брак как неисправность

Ремонт мегаомметра

Ремонт заключается в замене предохранителя, устранении неисправности кабельного повреждения, восстановления надежного заземления и достижения надежного контакта для измерительного объекта. Стоит отметить, что техническое обслуживание является лучшей профилактикой для бесперебойной работы. Также оно нужно, чтобы поддержать эксплуатационную надежность и повысить эффективность омметра.

Обратите внимание! В случае обнаружения брака, следует сделать замену оборудования или обратиться в сервисный центр для оказания профессиональной помощи. Необходимость обращения к мастерам для ремонта оборудования

Необходимость обращения к мастерам для ремонта оборудования

На что обращать внимание при работах с мегаометром

Повышенное напряжение прибора

Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму. По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ. Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции. На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения. Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.

Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.

Наведенное напряжение

Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток. Его величина на протяженных изделиях может достигать больших величин.

Этот фактор необходимо учитывать по двум причинам, связанным с:

2. безопасностью работающего персонала.

Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора. В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.

Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.

Остаточный заряд

Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд. После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело. По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения. Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов. После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.

Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением. Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ. Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.

Мегаомметр принцип работы и его схема

Работу c мегаомметром рассмотрим на примере самого распространенного прибора с маркировкой ЭС0202/2Г. Прибор произведенный еще в советское время, на Уманском приборостроительном заводе, мегаомметр получил распространение по территории всего Советского Союза и успешно работает в настоящее время

Надежность, неприхотливость, а что самое важное, точность измерений зарекомендовали этот прибор с положительной стороны. В России прибор под этой маркировкой производится в Белгороде и на многих других приборостроительных заводах

Прибор предназначен для проведения измерений с большими величинами сопротивлений, и рекомендуется для проверки высоковольтного оборудования, рассчитанного на большую мощность, а также для силовых кабелей большого сечения или раскинутых на значительное расстояние.

Рис №1: Внешний вид мегаомметра

Мегаоомметр этого типа относится к индукторным устройствам, работает за счет встроенного в конструкцию генератора, что позволяет прибору работать без постороннего источника питания, и без аккумуляторных батарей.

Принцип работы построен на использовании принципиальной схемы логарифмического измерительного устройства отношений. В измерительном процессе задействованы: электромеханический генератор напряжения, преобразователь и электронный измеритель.

Для работы рекомендуется использовать прерывистый режим, в котором 1 минута отводится на измерение, 2 минуты – пауза. При первом ознакомлении прибором внимательно изучите мегаомметр и инструкцию по эксплуатации.

Рис №2. Принципиальная схема мегаомметра ЭС0202/2Г

Безопасная эксплуатация мегаомметра

Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.

С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.

Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.

Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.

Характеристики и устройство

Омметр включает в себя:

  • стрелочный гальванометр;
  • источник стабилизированного питания (в простейшем случае – аккумулятор);
  • магазин сопротивлений, переключаемый на нужное с помощью многопозиционного переключателя;
  • шунт (для измерения сопротивления менее 1 Ом);
  • переменный резистор, настраивающий «ноль» перед началом измерений;
  • разъёмы для коннекторов, к которым присоединены провода с шупами на другом конце;
  • выключатель питания батарейки во избежание случайного соприкасания щупов и утечки её заряда.

Калибровочных резисторов может быть два – один подстраивает ноль грубо (быстро), другой – в десятки раз более точно. Калибровка нужна, так как со временем аккумулятор разряжается, понижая своё напряжение на выходе под нагрузкой (замкнутые накоротко или измеряемые эквивалентным сопротивлением щупы). Она занимает 1-3 секунды. Вся сборка помещена в ударопрочный корпус. Для удобства снятия показаний гальванометр чаще всего монтируют в корпусе в «лежачем» или «полулежащем» положении.

Важнейшими характеристиками омметра считаются:

  • точность (класс точности);
  • напряжение (ЭДС) питания батарейки или аккумулятора;
  • габариты и вес (носить с собой омметр, не помещающийся в кармане, неудобно);
  • ударо- и виброзащищённость (предусмотрены амортизирующие вставки из резины).

Из последнего следует, что бросать и трясти прибор нельзя. Стрелочный гальваномер имеет измерительную головку, уязвимую к виброударным воздействиям. При сильном ударе у стрелки может сломаться противовес – балансир, без которого её конец задевал бы за шкалу. В ряде случаев повреждается и возвратная пружина – плоская упругая спираль, возвращающая стрелку на нулевое деление после размыкания замеряющей цепи.

Как проверить мегаомметр

Перед началом измерительных работ выполняется операция по проверке исправного состояния прибора и его поводков, для этого, провода, подсоединенные к прибору замыкают накоротко, и вращают ручку генератора, стрелка должна показать «0» короткое замыкание в положении переключателя «I». При проверке, во время замыкания проводов, нельзя касаться их голыми руками, можно получить удар током.

Как пользоваться мегаомметромили последовательность проведения измерительных работ:

  1. Присоединение мегаомметра к гнездам измерения сопротивления.
  2. Присоединение заземляющего проводника к гнезду экрана (кожуха).
  3. Установка переключателя в нужный предел проведения измерения, всего их два, чем выше мощность оборудования, тем больше диапазон измерения.
  4. Проверяем работу прибора замкнув измерительные щупы, одновременно вращая ручку.
  5. После присоединения измерительных шнуров вращаем ручку мегаомметра (генератора питания), скорость должна быть не менее 120 об в мин.
  6. Установление стрелки измерения в определенное положение является началом отчета измерения.
  7. Чтобы понизить время измерения сопротивления мегаомметром по II шкале гнезда сопротивления закорачиваем (перед началом замера) и вращаем ручку прибора примерно 5 сек.
  8. После применения мегаомметра переключатель устанавливаем в нейтральное положение.

Рис №3. Схема присоединения мегаомметра

Допустимая погрешность в работе мегаомметра составляет 0,05 Мом +-15%. Предел дополнительной погрешности связанный с наличием в цепи измерения токов с промышленной частотой в виде помех, составляет около 500 мкА. Прибор может эксплуатироваться при температуре в границах от 30 до +50 о С. На зажимах присутствует измерительное напряжение мегаомметра от 500 до 2500В, в зависимости от диапазона используемого измерения, поэтому по окончании измерения необходимо разрядить генератор, касаясь измерительными щупами «земли» или закоротить их на секунду, между собой, до электрического разряда.

Мегаомметр

Мегаомметр — что это такое

Мегаомметр — это специальный прибор, который используют профессиональные электрики для измерения сопротивлений обмотки электросетей и электроприборов. Отличие мегаомметра от омметра состоит в том, что мегаомметр измеряет большие значения сопротивления на высоком напряжении. Напряжение для проверки сопротивления мегаомметр генерирует самостоятельно с помощью встроенного механического генератора или батарей. Величина напряжения составляет от 100 до 2500 вольт и устанавливается по значениям 100, 500, 700, 1000 и 2500 вольт.

По внешнему виду магаомметр представляет из себя прямоугольную коробочку с аналоговой шкалой с делениями в два ряда и стрелкой, которая указывает показания сопротивления при измерении изоляции. С боку располагается ручка динамо машины, раскручивая которую, вырабатывается постоянное напряжение, с помощью которого и измеряется сопротивление изоляции на измеряемом участке.

Но это мы описали внешний вид аналогового мегаомметра, современные измерители сопротивления изоляций имеют меньшие габариты, не имеют динамо машины, вместо нее батарейки или даже подключается питание от сети. Вместо аналогового датчика со стрелкой используется цифровое табло, а также есть память на некоторые прошлые циклы измерений.

Для чего нужен мегаомметр

Мегаоммерт используют для выявления повреждений в изоляции электросетей перед вводом в эксплуатацию, так же при выявлении мест уже появившихся аварийных ситуациях. Для проверки изоляции кабеля в трансформаторах, электродвигателях и любых других устройств, которые имеют электрическую обмотку с изоляцией. Основное использование мегаомметра – это измерение изоляции кабелей или другими словами, измерение сопротивления изоляции кабеля.

Испытания изоляции кабелей мегаомметром могут выявить слабые места в электросетях, как электропроводке зданий, так и в электродвигателях. Показатели, которые снимают мегаомметром, используют для определения степени изношенности изоляций, что может предотвратить неожиданные и нежелательные случаи короткого замыкания. А короткое замыкание происходит при механическом повреждении или при старении изоляции, когда токопроводящие жилы соприкасаются между собой.

Принцип работы мегаомметра

Мегаомметр работает по принципу вырабатывания различного напряжения, которое подается на испытуемый участок электросети для проверки сопротивления изоляции кабеля. В зависимости от номинальной нагрузки измеряемого прибора или электрического кабеля используют соответствующее напряжение. Перед испытанием подбирается подходящий мегаомметр, например, если нужно проверить бытовые приборы или проводку в квартире, то используется мегаомметр с напряжением не больше 250В.

Если простыми словами, то мегаомметрт подает постоянное напряжение на участок кабеля, который мы проверяем на наличие нормальной изоляции. Фиксируются показатели утечки напряжения и на основании этих показателей делаются выводы относительно нормы показателя изоляции испытуемого кабеля. Если утечка больше нормы, то считается, что изоляция повреждена и имеет место быть короткому замыканию. Что недопустимо при нормальной эксплуатации электрических сетей, т.к. чревато возгоранием кабелей, если не сработает автоматика отключения контактов при коротком замыкании кабелей.

Какие бывают мегаомметры

Название модели Диапазон измерения сопротивления Измерительное напряжение Масса прибора Габаритные размеры
ЦС0202-1, ЦС0202-2 от 200 кОм до 100 ГОм от 100 В до 2500 В до 1 кг. 220х156х61 мм.
ЭС0210, ЭС0210-Г от 0 кОм до 100 ГОм от 0 В до 600 В до 1,9 кг. 155х141х201 мм.
ЭС0202/1-Г, ЭС0202/2-Г от 0 кОм до 10 ГОм от 100 В до 2500 В до 2,2 кг. 210х150х230 мм.

Мегаомметры отличаются внешним исполнением и внутренним устройством. Аналоговые измерители сопротивления кабелей имеют динамо машину, которая, путем вращения за специальную ручку, вырабатывает постоянное напряжение, которым производятся замеры изоляции. Так же имеется аналоговое табло с делениями по двум шкалам и механическая стрелка, которая указывает на показатели. Более современные мегаомметры вместо динамо машины имеют элементы питания: аккумуляторные батареи или непосредственный блок питания. Есть цифровое табло, отображающее снимаемые показатели изоляции и память, которая хранит данные прошлых измерений.

У каждого мегаомметра есть свои плюсы и свои минусы, аналоговый больше по размерам и тяжелее, по сравнению с цифровым, но цифровой имеет прямую зависимость от элементов питания, когда аналоговый готов всегда к работе. Но выбор, каким мегаомметром пользоваться, всегда остается за вами.

{SOURCE}

Устройство и принцип работы

Мегаомметр — устройство для измерения сопротивления изоляции проводов и кабелей. При помощи щупов прибор подключается к измеряемой линии, после чего включается. Мегаомметр любого типа содержит источник постоянного напряжения. С его помощью в созданной измерительной цепи он генерирует высокое напряжение, которым и проверяется состояние изоляции кабеля. В зависимости от модели набор калибровочных напряжений может быть разным, могут они подаваться только по одному (более простые и дешевые) или в комбинациях (более сложные и дорогие).

Мегаомметры двух видов — «классический» с динамомашиной и электронный

В данный момент в эксплуатации есть два вида приборов — старого типа со встроенной динамомашиной, которая приводится в действие расположенной на боку прибора ручкой. Есть также электронные мегаомметры, которые могут использовать для создания испытательного напряжения внешние (бытовая электросеть) или внутренние (батарейки, аккумуляторы) источники напряжения. Некоторые модели электронных мегаомметров могут измерять другие электрические параметры сети — напряжение, низкоомное сопротивление и т.п. То есть могут использоваться вместо мультиметра. Правда, у них обычно не очень большой набор калибровочных напряжений для проверки состояния изоляции (обычно это 500 В и 1000 В).

Напряжение калиброванное и его величина выставляется переводом переключателя в нужное положение, выбирается оно в зависимости от типа испытываемого оборудования. Результаты измерений сопротивления изоляции отображаются на шкале (в стрелочных приборах) или на цифровом экране. Для удобства восприятия у стрелочных приборов шкала откалибрована в КОм или МОм.

Схема измерения мегаомметром параметров изоляции кабеля

Принцип работы мегомметра основан на законе Ома: I=U/R, сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению. Во время тестирования необходимо найти сопротивление: R=U/I. Это и проделывает мегаомметр. Он выдает в цепь определенное напряжение (которое вы выставите), измеряет силу тока, пересчитывает и выдает результат на шкале. Это и будет сопротивление изоляции в тестируемой цепи.

Подготовительный этап

Для того чтобы корректно измерить сопротивление изоляции, требуется правильно подготовить проверяемую электрическую установку. Все потребители должны быть отключены, все соединения разомкнуты, концы проводов отсоединены от аппаратуры. Если будут проводиться испытания системы освещения, недостаточно просто отключить выключатели – обязательно нужно удалить все осветительные приборы (выкрутить лампочки). Если есть возможность, лучше всего на время испытаний совсем отключить проводку от осветительной арматуры.

Если планируется проверять кабельную линию, подготовку следует начать с «дальнего» конца: отсоединить все аппараты, разомкнуть автоматы защиты и выключатели (рубильники), убедиться в том, что концы проверяемого кабеля свободны.

После этого следует ограничить доступ к «дальнему» концу линии. Это нужно для того, чтобы:

  • никто не был случайно травмирован высоким испытательным напряжением;
  • не было возможности по ошибке подать напряжение на кабель, пока проводятся измерения.

Для этого либо выставляется пост (помощник), либо помещение запирается, вывешиваются предупреждающие таблички.

В процессе измерений обязательно потребуется переносное заземление. Его можно организовать, проведя к месту замеров от клеммы защитного заземления электрощита гибкий медный провод сечением не менее 2 кв. мм. Второй конец провода подключается к заземляющей штанге. Если нет готовой штанги, её можно сделать из куска изолятора подходящей длины. Подойдёт сухая деревянная палка. Можно использовать кусок полипропиленовой трубы. Главное, чтобы с её помощью можно было поднести заземляющий провод к испытываемому проводнику с безопасного расстояния (примерно 1,5 метра).

Мегаомметр должен быть заведомо исправен. Проверка мегаомметров производится в специализированной метрологической мастерской. При этом проводится поверка измерительной системы и проверка исправности изоляции клемм.

Не следует путать термины «поверка» и «проверка»:

  • в ходе «проверки» убеждаются в общей целостности и исправности аппарата;
  • при «поверке» специалист-метролог выясняет, измеряет ли прибор необходимый параметр с должной точностью.

Проверяется также исправность изоляции измерительных проводов. На проверенный и поверенный приборы метролог накладывает контрольную пломбу и вносит соответствующую запись в журнал.

Обязательно надо убедиться в наличии необходимых средств индивидуальной защиты. Все участвующие в измерениях должны иметь необходимый допуск (III группа электробезопасности) и пройти медицинский осмотр.

Обозначения на мультиметре

Мультиметр — мечта электрика. Не нужно использовать несколько приборов для переключения с одной операции на другую.

Шкала прибора — важный элемент. Неправильная работа приводит к погрешностям измерения или неисправности прибора. Для этого нужно знать все обозначения на ней.

Шкала представляет собой круговые секторы со значками, обозначающими параметры. Каждый сектор отвечает за конкретный параметр. Все они разбиты линиями.

В комплекте идут щупы. Золотое правило: плюс — красный, за остальное отвечает черный. Гнезда подключения щупов:

Гнездо «COM». Это минус, масса. Сюда подключается черный щуп

Это важно при измерении полярных деталей.
Отверстие «VΩCX+». Это плюсовое гнездо, к которому подключается красный провод

Оно используется во всех измерениях, кроме силы тока.
Гнездо «10A». Служит для замера силы тока до 10 А. Значение может быть любым —20 А, 30 А. Это очень большая сила тока. Важно не сжечь прибор. Если появилась надпись около гнезда «UNFUSED», значит измерение проводится без предохранителя. Подключить мультиметр во время операции можно исключительно последовательно.
«MACX». Здесь подключается щуп для измерения малых токов — до 0,2 А.

Красный треугольник с предупредительной надписью «MAX 750» обозначает предел измерения напряжения. Число может меняться.

Если не известны пределы измерений — ставьте максимум на шкале. Ни в коем случае не прикасайтесь к металлической части щупа — если в некоторых случаях это приведет к погрешности измерения, то в тяжелых — к поражению током.

Расшифровка обозначений шкалы мультиметра по секторам:

  • «DCV» — постоянное напряжение;
  • «ACV» — измерение переменного напряжения;
  • «DCA» — шкала постоянной силы тока;
  • «ACA» — значок переменного тока.

Обозначения на шкале сопротивлений в стандартном исполнении: 20 Ом, 200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОМ, 20 МОМ, 200 МОМ. Они млгут быть разными. Для измерения ручка ставится в сектор «Ω».

На некоторых моделях постоянное напряжение обозначается черточкой с буквой V: «V—». Переменное напряжение — буквой V с волной.

Переменный ток

Значок переменного тока аналогичен переменному напряжению — волнистая черта забуквой A. Для измерения переменного тока в схему вводят выпрямительные диоды. Цешка плохо подходит для измерения этого параметра. Для этого нужны токоизмерительные клещи.

Постоянный ток

Обозначение постоянного тока аналогично постоянному напряжению — сплошная или прерывистая черточка около буквы A: «A—». Постоянный ток обозначается «DCA» или просто «DC». Регулятор выставляется в этом секторе. Для измерения параметра мы цепь — прибор подключаем параллельно. Параметр измеряется в одном проводнике, поэтому мы включаем в него мультиметр, который кроме пропуска тока занимается измерением.

Омметр «Виток»

Омметр «Виток» предназначен для измерения электрического сопротивления постоянному току объектов, обладающих значительной индуктивностью: обмоток силовых трансформаторов, генераторов, электродвигателей, жил силовых кабелей (на металлических каркасах) и др.

Прибор выпускается с сетевым (50Гц, 220В) и комбинированным (сеть/аккумулятор) питанием.

Результаты измерений индицируются на многофункциональном жидкокристаллическом дисплее. Время измерения зависит от индуктивности контролируемого объекта.

Прибор внесён в Госреестр средств измерений РФ. Свидетельство об утверждении типа средств измерений RU.C.34.033.A № 29195/1.


Результаты измерений и вычислений индицируются на многофункциональном жидкокристаллическом дисплее. Время измерения зависит от индуктивности контролируемых объектов.

Прибор успешно эксплуатируется при контроле силовых трансформаторов мощностью до 25000 кВА.

По отдельным заказам потребителей омметры «Виток» комплектуются входным измерительными кабелями (16 вариантов исполнения), которые отличаются длиной , материалом изоляции кабеля (трубки), а также конструкцией контакторов.

В настоящее время омметр «Виток» выпускается в двух модификациях — с сетевым и комбинированным питанием.

Технические характеристики
Диапазон измеряемых сопротивлений, Ом 10-6…105
Погрешность измерения сопротивления, % 0,2…0,5
Диапазон рабочих температур, оС минус 5…40
Потребляемая мощность, ВА, не более 70
Габаритные размеры, мм, не более 232х192х111
Питание прибора от сети частотой 50 Гц, В 220
Масса прибора, кг, не более 2,8
Продолжительность непрерывной работы омметра от встроенного аккумулятора, час, не менее 3,0
Входные кабели и контакторы
Контактор Трубка Длина, м
Вариант 1 Вариант 2 Вариант1 Вариант 2
1 + + 3
2 + +
3 + +
4 + +
5 + + 5
6 + +
7 + +
8 + +
9 + + 10
10 + +
11 + +
12 + +
13 + + 15
14 + +
15 + +
16 + +

Контактор вариант 1 :

Контактор (вариант 1) представляет собой одну пару подпружиненных клещей длиной 150 мм и толщиной металла – 0,7 мм. Клещи снабжены двумя заострёнными контактами в верхней части губок и одним — в нижней части губок. Два верхних контакта соединены с токовой, а один нижний – с потенциальной цепью входного кабеля. Контакты изолированы от клещей. Максимальное расстояние между потенциальным и токовыми штырями при раскрытых клещах составляет 20 мм.

Контактор вариант 2 :

Контактор (вариант 2) представляет собой две пары подпружиненных клещей длинной 75мм и толщиной металла – 0,3 мм. Максимальное расстояние между губками в раскрытом состоянии — 25мм. В каждой паре одни клещи подпаяны к токовому проводу, а другие к потенциальному. Данные клещи в отличие от первого варианта исполнения не оснащены заостренными штырями.

Трубка вариант 1 :

Силиконовая трубка стойкая к низким и высоким температурам, а также агрессивным средам (в том числе действию ультрафиолета). Эластичная силиконовая трубка с двойной толщиной стенкой имеет значительно лучшую механическую прочность, чем трубка ПХВ.

Трубка вариант 2 :

Эластичная ПХВ трубка.

Во всех вариантах исполнения входного кабеля в качестве токовой цепи используется экранированный провод марки МГШВЭ сечением 0,75 мм, а в качестве потенциальной — сечением 0,2 мм.

Руководство по эксплуатации

Декларация о соответствии

Описание типа средства измерений

Свидетельство

Свидетельство РЖД

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий