Паропроницаемость типовых строительных конструкций

Влияние паропроницаемости на другие характеристики

Стоит отметить, что, если во время строительства не был установлен утеплитель, при сильном морозе в ветреную погоду тепло из комнат будет уходить достаточно быстро. Именно поэтому необходимо грамотно производить утепление стен.

При этом долговечность стен с высокой проницаемостью является более низкой. Это связано с тем, что при попадании пара в стройматериал влага начинает застывать под воздействием низкой температуры. Это приводит к постепенному разрушению стен. Именно поэтому при выборе стройматериала с высокой степенью проницаемости необходимо грамотно установить пароизоляционный и теплоизоляционный слой. Чтобы узнать паропроницаемость материалов стоит использовать таблицу, в которой указаны все значения.

Факторы, способствующие конденсации

Задумываясь о том, нужно ли утеплять дом из газобетона, сначала стоит изучить теорию. Газобетон сам по себе хорошо сохраняет тепло за счет наличия в структуре материала воздушных пор. Но прокладка теплоизоляционного слоя нужна не только для утепления и экономии в будущем на отоплении, но и для защиты от появления влаги, которая способна быстро разрушить всю конструкцию.

Ведь газоблок гигроскопичен, он сильно впитывает воду, которая потом при замерзании приводит к появлению деформаций, распространению трещин. Избежать этого удается только благодаря изоляционным и отделочным материалам, способным обеспечить надежную защиту блоков от влаги.

Основные причины появления конденсата:

  • Высокая влажность внутри помещения при условии пониженной температуры на улице. Так, влага может появляться в процессе строительства, но она испаряется на протяжении года благодаря вентиляции и паропроницаемости отделочных материалов (чтобы влага не «запиралась» внутри стен).
  • Недостаточное сопротивление теплопередаче стен – при ошибках выбора материала либо его толщины (даже если в помещении тепло благодаря отоплению).
  • Появление «мостиков холода» — зон с низкой теплоизолирующей способностью из-за наличия металлических анкеров, укладки блоков на цементный раствор.
  • В случае нарушения технологии строительства – при наличии щелей в утеплителе, из-за некачественного заполнения клеем стыков вертикальных и т.д.
  • При запирании внутри влаги.

Последний случай самый сложный и наблюдается, когда материал с высоким показателем паропроницаемости облицовывается с внешней стороны материалом с низким уровнем паропроницаемости.

Выполняя теплоизоляцию и облицовку, нужно помнить о таком правиле: чем ближе к внешней стороне, тем выше должна быть паропроницаемость (в связи с чем лучший вариант утеплителя для газобетона – минеральная вата, паропроницаемые краски и штукатурки). В противном случае проявляется эффект парника.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

0,013

пенополиуретан

0,05

минеральная вата

0,3 – 0,55

фанера

0,02

железобетон, бетон

0,03

сосна или ель

0,06

керамзит

0,21

пенобетон, газобетон

0,26

кирпич

0,11

гранит, мрамор

0,008

гипсокартон

0,075

дсп, осп, двп

0,12

песок

0,17

пеностекло

0,02

рубероид

0,001

полиэтилен

0,00002

линолеум

0,002

Паропроницаемость газосиликатных блоков

Технология.

Он и создаёт пористую структуру. поры получаются незакрытыми а водород такой газ что даже сквозь метал просачивается. В итоге водород очень быстро замещается воздухом. В состав может добавляться цемент, шлак, и.т.д. с целью уменьшения стоимости и улучшения прочностных или других характеристик. Химической реакцией обусловлено большое начальное количество воды в блоках.

В силу того что производством автоклавного газобетона занимаются достаточно крупные заводы, геометрия и стабильность характеристик как правило весьма высоки.

Теплоёмкость.

Теплоёмкость у газосиликата средняя. То есть удельная она даже выше чем у кирпича С=1000 Дж/кг°С против С=880 Дж/кг°С у кирпича. Вот только плотность газосиликата 400-500 кг/м3. Против 1600-1800 кг/м3 у кирпича. отсюда и получается в (880*1600)/(1000*400)=3,52 раза меньшая теплоёмкость по сравнению с кирпичом. Дерево при своей плотности 650 кг/м3 имеет удельную теплоёмкость С=2700 Дж/кг°С и опережает кирпич.

Это конечно значитьльно больше чем СИП или Каркас но значительно меньше чем дерево или кирпич.

Паропроницаемость.

Это хорошая иллюстрация того когда неправильная наружняя отделка и нарушение технологии привело к таким последствиям https://realty.tut.by/news/building/427198.html

Журналисты там неправильно описали физику процесса. Правильная выглядит так.

Блоки с завода пришли с высокой естественной влажностью, дому не дали отстоятся и высохнуть а сразу оштукатурили и окрасили. Паропроницаемость обычной штукатурки и краски значительно ниже чем у газобетона. В результате большое количество воды не вышло из стены до зимы. Образовалась точка росы, а поры были целиком заполнены водой. И. результат на фотографии.

Звукоизоляция.

Звукоизоляция у газосиликата относительно слабая. Причин несколько это и малый вес, и пористая структура, и достаточно высокая упругость пор. Коэффициент звукоизоляции для перегородки толщиной 10 см составляет всего 35-37 Дб Тоже самое для перегородки 20 см 40-42 Дб А для стены 40 см 47-49 Дб. В то же время даже минимальные требования по звукоизоляции внутри помещения должны соответствовать 43 Дб для комнат и 47 Дб для санузлов. А звукоизоляция от уличного шума минимум 52 Дб, комфортная 60 Дб.

Не думайте что разница не такая большая подумаешь пара децибел. Шкала громкости логарифмическая и разность в три децибела это в 2 раза громче! В целом звукоизоляция у газосиликата не оченьхорошая , и как правило он требует дополнительной звукоизоляции. Для наружных стен очень часто в качестве такой меры выступает лицевая кирпичная кладка. Но чаще проблема случается не с наружными а с внутренними стенами. Перегородка из 10 см блока и слышно всё очень хорошо.

Долговечность.

Газосиликат надёжный материал. Но он весьма уязвимый к замерзанию воды и механическим нагрузкам , вода может его серьёзно разрушить даже за один сезон. Непостоянные механические нагрузки, при неправильном выполнении узлов, за 30-40 лет.

Стоимость квадратного метра стены.

Квадратный метр стены из газосиликата толщиной 400 ммYTONG

Материал на м2 стены 0,4 м3*4600=1840 р/м2

Работа на м2 стены 520 р/м2

Итого материал с работой: 2360 р/м2.

Самый средний по стоимости материал.

Каркасные и дома из СИП панелей приблизительно на 1000 р/м2 стены дешевле.

Деревянные и кирпичные утеплённые дома на 1000-1500 р/м2 стеныдороже.

Технониколь — надежный российски бренд

Это исключительно российский бренд, который имеет 53 завода в 7 странах мира. Среди них Германия и Великобритания, Италия и Литва. Официальные представительства находятся в 18 странах. Там же расположены и Учебные центры компании. Технониколь имеет собственные Научные центры для разработок новых технологий по тепло- и шумоизоляции. Продукция этого концерна пользуется большой популярностью ввиду конкурентоспособных цен и реализуется в 95 странах.

Общестроительная теплоизоляция Технониколь на основе каменной ваты

Недорогой способ выполнить теплоизоляцию на любом строительном объекте — это материалы на основе каменной ваты с универсальным предназначением. В Технониколь такая продукция представлена серией БАЗАЛИТ. Все марки могут крепиться горизонтально или вертикально.

  • БАЗАЛИТ Л-30 — отличается плотностью 25-35 кг/м3 и теплопроводностью 0.032 Вт/(м*К) при наружной температуре 10 градусов. Хорошо подходит для нижнего слоя с последующим укрытием.
  • БАЗАЛИТ Л-50 — более плотные плиты (36-50 кг/м3), ориентированные на укладку в любом пространственном положении. Особенно хороши для нижнего слоя при утеплении полов и междуэтажных перекрытий.
  • БАЗАЛИТ Л-75 — наиболее плотный материал на основе каменной ваты с показателем 51-75 кг/м3. Паропроницаемость 0.5 мг/(м.ч.Па) разрешает использовать его в среднем слое на стенах с легкой кладкой.

Каменная вата Технониколь для утепления всех типов кровли

Для всех типов кровли компания Технониколь разработала линейку утеплителей ТЕХНОРУФ. Марка ТЕХНОРУФ Н ЭКСТРА производится в виде базальтовой плиты с плотностью 90-110 кг/м3 и выдерживает давление до 3000 кг на 1 м2. Она оптимальна для обустройства покатой кровли. ТЕХНОРУФ Н ПРОФ является следующей по классу и обладает плотностью 110-130 кг/м3. При деформации в 10% способна переносить нагрузку до 4000 кг на квадратный метр, что тоже неплохо для утепления крыши сложной формы.

ТЕХНОРУФ В ПРОФ разработана для всех типов плоской кровли. У нее выраженный гидрофобизированный эффект. Она может выступать верхним прочным слоем в трехслойных конструкциях. Ее плотность 175-205 кг/м3, а прочность разрешает выдерживать до 8000 кг давления на м2. Чтобы быстро создать уклон на плоской крыше для схода осадков применяют ТЕХНОРУФ КЛИН 4.2%, который автоматически образует контур наклона. При этом сама вата эффективно борется с задержкой холода и имеет показатель теплопроводности 0.038 Вт/(м*К).

Технониколь ТЕХНОРУФ Н ЭКСТРА.

Каменная вата Технониколь для утепления вентилируемого фасада

Для вентилируемого фасада производитель предлагает целую линейку базальтовой ваты из серии ТЕХНОВЕНТ. Марка ТЕХНОВЕНТ ЭКСТРА вполне подойдет в качестве основного слоя или в сочетании с другим изолятором. Ее воздухопроницаемость составляет 35 м*с*Па.

Существует и другой вид этого материала — это ТЕХНОВЕНТ Н ПРОФ воздухопроницаемость которого составляет 80 м*с*Па. Утеплитель предназначен для применения в промышленном и гражданском строительстве при новом строительстве и реконструкции зданий и сооружений различного назначения в качестве внутреннего слоя при двухслойном выполнении теплоизоляции в навесных фасадных системах с воздушным зазором.

Каменная вата Технониколь для утепления мокрого фасада

Для мокрого фасада хорошо подходит утеплитель ТЕХНОФАС ЭКСТРА, рассчитанный на удержание толстого слоя штукатурки. Плотность плиты бывает 80-100 кг/м3, а толщина от 50 до 150 мм.

Когда планируется тонкий слой штукатурки, то можно сэкономить и выбрать ТЕХНОФАС ЭФФЕКТ, который при меньшем сечении имеет повышенную плотность 125-137 кг/м3, что обеспечит нужную прочность. ТЕХНОФАС ДЕКОР выпускается для утепления фасадов на балконах и лоджиях, поэтому у него повышенный предел прочности 25 кПа.

Технониколь ТЕХНОФАС ЭКСТРА.

Каменная вата Технониколь для использования в каркасных строениях

У каркасных строений присутствует дилемма: утеплитель должен быть достаточно плотным, чтобы не проседать со временем, и в то же время не тяжелым, чтобы не перегружать конструкцию. Для этого лучше всего подойдет серия ТЕХНОБЛОК, которая рассчитана на монтаж в каркасных стенах и последующую обшивку. Марка СТАНДАРТ имеет плотность 40-50 кг/м3, а ПРОФ 60-70 кг/м3. По толщине плиты бывают от 50 до 150 мм и они подойдут для любых стен каркасного дома.

Чтобы не утяжелять конструкцию массивным утеплителем в перегородках внутри каркасного дома производитель выпускает облегченный вариант — линейку ТЕХНОЛАЙТ. Она имеет три вида (ЭКСТРА, ОПТИМА, ПРОФ) и плотность от 30 до 46 кг/м3. Толщина варьирует от 50 до 200 мм, что подойдет под любой тип перегородок.

Технониколь ТЕХНОБЛОК.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.
Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Что нужно знать

 Следующие материалы имеют высокую паропроницаемость:

  • дерево;
  • глины;
  • ячеистый бетон.

Следует отметить, что стены из кирпича или бетона также имеют паропроницаемость, но этот показатель меньше. При перегрузке в парилке он сбрасывается не только через капюшон и окна, но и через стены. Поэтому многие считают, что в зданиях из бетона и кирпича трудно дышать.

Но стоит отметить, что в современном доме большая часть пара проходит через окна и капот. В то же время 5% пара проходит через стены. Важно знать, что в ветреную погоду из-за жары здание из воздухопроницаемых строительных материалов быстрее. Поэтому при строительстве дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении. Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше влажность стен. Высокая теплопроводность строительных материалов низкая. При увлажнении различных строительных материалов индекс паропроницаемости может возрасти до 5 раз. Поэтому необходимо определить пароизоляцию

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше влажность стен. Высокая теплопроводность строительных материалов низкая. При увлажнении различных строительных материалов индекс паропроницаемости может возрасти до 5 раз. Поэтому необходимо определить пароизоляцию.

Резюме

Как видно, не существует однозначного запрета на использования пенопласта в паре с газоблоком. Есть определенные ограничения и предостережения в отношении материалов, соблюдая которые можно добиться правильного результата. Монтировать утеплитель необходимо в теплую сухую погоду. Если накануне прошел дождь, то необходимо дать время газобетону хорошо высохнуть перед тем, как приступить к работе с материалом

Во время монтажа утеплителя важно постоянно проверять вертикальную и горизонтальную плоскость материала посредством уровня, чтобы добиться ровной поверхности финишной отделки

Источник

Точка росы

Физическая величина, которую измеряют в градусах. Когда температура воздуха достигает определенного значения, то содержание паров достигает своего максимально возможного значения. Если же температура точки росы в помещении выше, чем на поверхности, то происходит осаживание конденсата. К примеру, на кухне, где постоянно готовится пища, моется посуда и кипятится вода, точкой росы считается окно, на стекле которого оседают капли.

Это зависит от следующих показателей:

  • относительная влажность;
  • величина разницы температур по обе стороны стены;
  • паропроницаемость используемых материалов;
  • толщина каждого слоя стены.

Паропроницаемость и утепление стен

Во время отопления дома необходимо соблюдать правило, согласно которому паровой слой слоев должен подниматься наружу. Благодаря  зиме он не будет накапливаться в слоях воды, если в точке росы будет скапливаться конденсат.

Изоляция внутри, хотя многие строители рекомендуют создавать тепло и пароизоляцию снаружи. Это связано с тем, что пар поступает в помещение, и когда стены изолированы изнутри, влага не попадает в строительный материал. Часто для изоляции дома используется экструдированный полистирол. Коэффициент паропроницаемости этих строительных материалов низкий.

Другим методом изоляции является разделение слоев с помощью пароизоляции. Вы также можете применить материал без паров. Пример – изоляция стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло предотвращает проникновение паров, в этом случае кирпичная стена служит аккумулятором влаги, а когда уровень влажности прыгает, она становится помещением для климат-контроля в помещении.

Стоит помнить, что, если вы утепляете стены неправильно, строительные материалы могут потерять свои свойства через короткое время. Поэтому важно знать не только свойства используемых компонентов, но и как их закрепить на стенах дома

Процесс утепления наружных стен пенопластом


Схема нанесения клея на плиты пенопласта.

В регионах с преобладанием влажного климата использовать пенопласт в качестве утеплителя не рекомендуется. Влага, скапливающаяся между блоками газобетона и пенопластом, неминуемо приведет к загниванию газоблоков.

Работы по утеплению стен из газобетона проводятся в несколько последовательных этапов:

  • подготовка стен;
  • утепление стен внутри помещения;
  • внешнее утепление;
  • финишная отделка поверхностей.

Подготовительный этап заключается в очистке поверхности стен от грязи, в заделывании возможных трещин и щелей штукатурным раствором на основе цемента, различными мастиками и замазками.


Схема монтажа цокольного профиля.

Плиты пенопласта начинают укладывать на поверхность стены с нижнего ряда и от угла здания. Клеевую смесь наносят зубчатым шпателем на всю поверхность плиты. Если стена не очень ровная, то такой способ не годится. В этом случае клеем промазывают полосу шириной около 5-8 см по краю плиты и ставят несколько точек диаметром около 10 см по центру. Толщина клеевого слоя должна составлять 15-20 мм. После этого плита прикладывается к стене и прижимается к ней. Остальные плиты в ряду плотно прикладываются к ранее установленным.

Последующие ряды укладываются со смещением относительно нижнего ряда, чтобы получилось подобие кирпичной кладки. Для более прочного соединения утеплителя со стеной нужно дополнительно установить пластиковые дюбеля-зонтики. Для этого по углам и в центре каждой плиты просверливаются отверстия таким образом, чтобы они проникли вглубь газобетона на 5 см и более. Дюбеля забиваются молотком в эти отверстия. Шляпки утапливаются в пенопласт примерно на миллиметр. В центр дюбеля до упора забивается пластиковый сердечник. Оставшаяся его часть срезается ножом.

Оставшиеся зазоры между плитами пенопласта создают мостики холода. Их необходимо устранить с помощью монтажной пены или специального герметика. После этого можно стены загрунтовать и отделать штукатуркой, затем покрасить.

Если планируется выполнить отделку другими материалами вроде сайдинга и вагонки, то еще до установки плит утеплителя на стене нужно смонтировать каркас из деревянных брусьев или металлических направляющих, к которым будет крепиться материал облицовки.

Влияние паропроницаемости на другие характеристики

Стоит отметить, что, если во время строительства не был установлен утеплитель, при сильном морозе в ветреную погоду тепло из комнат будет уходить достаточно быстро. Именно поэтому необходимо грамотно производить утепление стен.

При этом долговечность стен с высокой проницаемостью является более низкой. Это связано с тем, что при попадании пара в стройматериал влага начинает застывать под воздействием низкой температуры. Это приводит к постепенному разрушению стен. Именно поэтому при выборе стройматериала с высокой степенью проницаемости необходимо грамотно установить пароизоляционный и теплоизоляционный слой. Чтобы узнать паропроницаемость материалов стоит использовать таблицу, в которой указаны все значения.

Создание комфортных условий

Для создания в жилище благоприятного микроклимата требуется принимать во внимание особенности используемого строительного сырья. Особый акцент следует сделать на паропроницаемости

Обладая знаниями об этой способности материала, можно корректно подобрать необходимое для строительства жилья сырье. Данные берутся из строительных норм и правил, например:

  • паропроницаемость бетона: 0,03 мг/(м*ч*Па);
  • паропроницаемость ДВП, ДСП: 0,12-0,24 мг/(м*ч*Па);
  • паропроницаемость фанеры: 0,02 мг/(м*ч*Па);
  • керамического кирпича: 0,14-0,17 мг/(м*ч*Па);
  • кирпича силикатного: 0,11 мг/(м*ч*Па);
  • рубероида: 0-0,001 мг/(м*ч*Па).
Паропроницаемость пеноблока, газоблока, бетоляПаропроницаемость пеноблока, газоблока, бетоля

Образование пара в жилом доме может быть вызвано дыханием человека и животных, приготовлением еды, перепадом температур в ванной комнате и прочими факторами. Отсутствие вытяжной вентиляции также создаёт высокую степень влажности в помещении. В зимний период нередко можно замечать возникновение конденсата на окнах и на холодном трубопроводе. Это наглядный пример появления пара в жилых домах.

Оборудование для определения степени проницаемости

Профессиональные строители имеют специализированное оборудование, которое позволяет точно определить паропроницаемость определенного строительного материала. Для вычисления описываемого параметра применяется следующее оборудование:

  • весы, погрешность которых является минимальной;
  • сосуды и чаши, необходимые для проведения опытов;
  • инструменты, позволяющие точно определить толщину слоев строительных материалов.

Благодаря таким инструментам точно определяется описываемая характеристика. Но данные о результатах опытов занесены в таблицы, поэтому во время создания проекта дома не обязательно определять паропроницаемость материалов.

Укладка пароизоляции на пол

Пароизоляционный слой является составляющей частью пирога, куда входят: лаги, гидроизоляция, черновой пол, утеплитель и чистовой пол. Перед настилом пароизолятора поверхность подготавливают. Если это древесина новостройки, то её пропитывают антисептиком, покрывают слоем защитного лака.

При подготовке поверхности эксплуатируемого дома необходимо удалить старое покрытие с полов, другие материалы, используемые ранее. Прежде чем приступить к укладке пирога, нужно проверить прочность лаг и чернового основания. Они не должны прогибаться, иметь признаки разрушения древесной структуры.

Пароизоляция укладывается на ровную поверхность, предварительно очищенную от мусора. На ней не должно быть гвоздей и прочих острых предметов, которые могли бы повредить плёнку. Перед настилом материала проверяется, какой стороной его следует стелить. Если это обычная полиэтиленовая плёнка, то никакой разницы нет. Изоспан светлой стороной кладут к утеплителю. Ворсистая часть изолятора кладётся по направлению в помещение. Фольгированный материал настилают блестящей стороной по направлению в помещение.

Если конструкция пола нестандартная, имеющая труднодоступные места, целесообразно промазывать их дополнительно битумной пароизоляцией.

При утеплении пола пароизоляционная плёнка настилается до теплоизолятора и поверх него. Роль утеплителя отводится минеральной вате, пенопласту либо пенополистиролу.

Одним из требований технологии по укладке пароизоляции является соблюдение последовательности формирования пирога.

  1. Поверх чернового пола настелить гидроизоляционный материал.
  2. Уложить пароизоляцию с заходом на лаги. Плёнку фиксируют оцинкованными гвоздями, клеящей лентой или степлером.
  3. Утеплить пространство между лагами с помощью выбранного вида теплоизолятора. Материал должен плотно прилегать к лагам, не оставляя шансов для образования мостиков холода.
  4. Приклеить липкую ленту по периметру помещения в нижней части стен.
  5. Настелить пароизоляционную мембрану. Полотна укладывают поперёк лаг. Соединения выполняются внахлест с проклеиванием стыков фольгированным скотчем. Считается нормой, если по центру плёнка слегка провисает.
  6. Закрепить пароизоляцию с помощью степлера.
  7. Края мембраны, заходящие на стену, закрепить к липкой ленте.

Завершается работа монтажом пола.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Это интересно: Какие трубы использовать для вентиляции в частном доме — познавайте с нами

С этим читают

Что нужно знать

Многие знакомы с мнением, что «дышащие» стены полезны для проживающих в доме. Высокими показателями паропроницаемости обладают следующие материалы:

Стоит отметить, что стены, сделанные из кирпича или бетона, также обладают паропроницаемостью, но этот показатель является более низким. Во время скопления в доме пара он выводится не только через вытяжку и окна, но еще и через стены. Именно поэтому многие считают, что в строениях из бетона и кирпича дышится «тяжело».

Но стоит отметить, что в современных домах большая часть пара уходит через окна и вытяжку. При этом через стены уходит всего лишь около 5 процентов пара

Важно знать о том, что в ветреную погоду из строения, выполненного из дышащих стройматериалов, быстрее уходит тепло. Именно поэтому во время строительства дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше стены вмещают в себя влаги. Морозостойкость стройматериала с высокой степенью проницаемости является низкой. При намокании разных стройматериалов показатель паропроницаемости может увеличиваться до 5 раз. Именно поэтому необходимо грамотно производить закрепление пароизоляционных материалов.

Что такое паропроницаемость материалов

Паропроницаемость материалов – способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Материал

Плотность, кг/м3

Теплопроводность, Вт/(м*С)

Паропроницаемость, Мг/(м*ч*Па)

Алюминий

2600

221

Асфальтобетон

2100

1.05

0.008

АЦП

1800

0.35

0.03

Бетон

2400

1.51

0.03

Битум

1400

0.27

0.008

Гипсокартон

800

0.15

0.075

Гранит

2800

3.49

0.008

ДСП, ОСП

1000

0.15

0.12

Дуб вдоль волокон

700

0.23

0.30

Дуб поперек волокон

700

0.10

0.05

Железобетон

2500

1.69

0.03

Картон облицовочный

1000

0.18

0.06

Керамзит

800

0.18

0.21

Керамзит

200

0.10

0.26

Керамзитобетон

1800

0.66

0.09

Керамзитобетон

500

0.14

0.30

Кирпич керамический пустотелый (брутто1000)

1200

0.35

0.17

Кирпич керамический пустотелый (брутто1400)

1600

0.41

0.14

Кирпич красный глиняный

1800

0.56

0.11

Кирпич, силикатный

1800

0.70

0.11

Линолеум

1600

0.33

0.002

Медь

8500

407

Минвата

200

0.070

0.49

Минвата

100

0.056

0.56

Минвата

50

0.048

0.60

Мрамор

2800

2.91

0.008

ПАКЛЯ

150

0.05

0.49

Пенобетон

1000

0.29

0.11

Пенобетон

300

0.08

0.26

Пенопласт ПВХ

125

0.052

0.23

Пенополистирол

150

0.05

0.05

Пенополистирол

100

0.041

0.05

Пенополистирол

40

0.038

0.05

ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ

33

0.031

0.013

ПЕНОПОЛИУРЕТАН

80

0.041

0.05

ПЕНОПОЛИУРЕТАН

60

0.035

0.05

ПЕНОПОЛИУРЕТАН

40

0.029

0.05

ПЕНОПОЛИУРЕТАН

32

0.023

0.05

Пеностекло

400

0.11

0.02

Пеностекло

200

0.07

0.03

Песок

1600

0.35

0.17

ПОЛИМОЧЕВИНА

1100

0.21

0.00023

ПОЛИУРЕТАНОВАЯ МАСТИКА

1400

0.25

0.00023

Полиэтилен

1500

0.30

0.00002

Рубероид, пергамин

600

0.17

0.001

Сосна, ель вдоль волокон

500

0.18

0.32

Сосна, ель поперек волокон

500

0.09

0.06

Сталь

7850

58

Стекло

2500

0.76

Фанера клееная

600

0.12

0.02

 Таблица паропроницаемости строительных материалов

Сферы применения

Главным назначением пергамина можно считать защиту утеплительного и гидроизоляционного слоев от намокания. В противном случае кровельный или иной слой в деревянном доме или бане потеряет свои качественные характеристики. Строительную бумагу используют в разных сферах.

  • Строительство. При устройстве последнего слоя кровли на границе с утеплителем укладывается пергамин, он нужен для предотвращения накопления влаги. Помимо этого, материал нашел свое применение в качестве пароизоляционного слоя зданий, которые находятся в условиях сурового климата. Так как в таких помещениях часто топят, что провоцирует температурные перепады, происходит накопление конденсата. Пергамин применяют для стен внутри и снаружи конструкции, под гибкую черепицу. Этот материал может служить дополнительным слоем для древесины и бетона.
  • Оборудование авто- и теплотрасс, канализаций. Строительная бумага в этом случае является качественным упаковочным материалом для металлоизделий. Благодаря наличию фунгицидов и антисептиков в материале не происходит образования плесени, грибков.
  • Возведение бань, беседок. Как гидроизоляция и пароизоляция фундаментного перекрытия, а также на черновой пол.

Основные выводы

Рассматривая свойства стен из газоблока и необходимость в утеплении, можно сделать несколько важных выводов, на которые стоит опираться при проектировании, реализации расчетов и строительстве.

Нужно ли утеплять газоблоки:

  • Если в строительстве используется блок марки D500 и толщина стен равна 30-40 сантиметрам, то слой утеплителя для жилого помещения обязателен. Достаточно слоя толщиной 5 сантиметров из минеральной ваты или 10 сантиметров пенополистирола.
  • Пенополистирол менее предпочтителен, чем минеральная вата, так как является паронепроницаемым материалом и при неправильном расчете точки росы может стать причиной скопления влаги внутри блоков.
  • Стены, построенные из газоблоков марки D400 толщиной в 40 сантиметров в средней полосе России можно не утеплять.
  • Паропроницаемость материалов должна увеличиваться в направлении изнутри наружу.
  • Предпочтительный вариант облицовки – вентилируемые фасады, при условии качества материала стены дополнительно можно не утеплять.
  • Для понижения теплопотерь нужно соблюдать технологию строительства – класть блоки на клей, не применять сквозные крепления металлическими анкерами (чтобы исключить появление мостиков холода).

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий