Коэффициент теплопроводности материалов

Методы определения КТП

Существует 2 метода определения КТП:

  1. Стационарный – предполагает работу с параметрами, которые не будут изменяться в течение длительного времени или изменяющиеся незначительно. Преимущество этого метода в высокой точности вычисления результата. К недостаткам относится сложность регулировки эксперимента, большое количество используемых термопар, а также длительность затраченного времени на подготовку и проведение опыта. Этот метод подходит для вычисления КТП жидкостей и газов, если не учитывать передачу энергии конвекцией и излучением. 
  2. Нестационарный – визуально выглядит более простой и требует для выполнения от 10 до 30 минут. Нашла своё широкое применение из-за того, что в процессе исследования можно узнать не только КТП, но и температурную проводимость, а также теплоёмкость образца. 

Для проведения анализа теплопроводности строительных материалов применяются электронные приборы, например, ИТП-МГ4 «Зонд». Такие средства для вычисления КТП отличаются рабочим диапазоном температур, а также процентом погрешности.
 

Видео описание

Как выполняется вычисление КТП с помощью электронного прибора, смотрите в видео:

Определение коэффициента теплопроводности через тепловой поток (в домашних условиях)Определение коэффициента теплопроводности через тепловой поток (в домашних условиях)

Таблица тепловой эффективности материалов

Большинство сырья, которое используется при строительстве, не нуждается в самостоятельном измерении КТП. Для этого существует таблица теплопроводности материалов, которая показывает основные характеристики, требуемые для расчёта тепловой эффективности. 

Материал Плотность, кг/м3 Теплопроводность, Вт/(м*градусы) ТеплоёмкостьДж/(кг*градусы)
Железобетон 2500 1,7 840
Бетон на гравии или щебне из природного камня 2400 1,51 840
Керамзитобетон лёгкий 500-1200 1,19-0,45 840
Кирпич строительный 800-1500 0,24-0,3 800
Силикатный кирпич 1000-2200 0,51-1,29 750-840
Железо 7870 70-80 450
Пенополистирол Пеноплэкс 110-140 0,042-0,05 1600
Плиты минераловатные 150-250 0,043-0,063

Большинство материалов отличается по своему составу. Например, теплопроводность кирпича зависит от того, из чего он сделан. Клинкерный имеет КТП от 0,8 до 1,6, а кремнезёмный 0,15. Также есть отличия по методу изготовления и стандартам ГОСТ. 


Пенополистирол разной толщиныИсточник cmp24.com.ua

Коротко о главном

Коэффициент теплопроводности – это скорость передачи тепла через материал в течение определённого времени.

Знание КТП нужно для улучшения тепловой эффективности конструкции. Например, если она должна быстро отдавать тепло, то её нужно делать из сырья с высокой передачей энергии, а для закрытых помещений наоборот нужны дополнительные утеплители. Это поможет сэкономить деньги на отоплении.

На теплопроводность материала влияет его плотность, влажность и волокнистость.
 

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Показатели для стали

  • В справочных материалах по теплопроводности различных материалов особое место занимают данные, представленные о сталях разных марок.Так, в справочных материалах собраны экспериментальные и расчетные данные следующих типов стальных сплавов:стойких к воздействию коррозии, повышенной температуры;
  • предназначенных для производства пружин, режущего инструмента;
  • насыщенных легирующими добавками.

В таблицах сведены показатели, которые были собраны для сталей в температурном диапазоне от -263 до 1200 градусов.Усредненные показатели составляют для:

  • углеродистых сталей 50 – 90 Вт/(м×град);
  • коррозионностойких, жаро- и теплостойких сплавов, относящимся к мартенситным — от 30 до 45 Вт/(м×град);
  • сплавов, относящимся к аустенитным от 12 до 22 Вт/(м×град).
Теплопроводность металлов(Thermal conductivity of the metals)Теплопроводность металлов(Thermal conductivity of the metals)

В этих справочных материалах размещена информация и свойствах чугунов.

Теплопроводность воздуха в жидком и газообразном состояниях при низких температурах и давлении до 1000 бар

В таблице приведены значения теплопроводности воздуха при низких температурах и давлении до 1000 бар. Теплопроводность выражена в Вт/(м·град), интервал температуры от 75 до 300К (от -198 до 27°С).

Величина теплопроводности воздуха в газообразном состоянии увеличивается с ростом давления и температуры. Воздух в жидком состоянии с ростом температуры имеет тенденцию к снижению коэффициента теплопроводности.

Черта под значениями в таблице означает переход жидкого воздуха в газ — цифры под чертой относятся к газу, а выше ее — к жидкости. Смена агрегатного состояния воздуха существенно сказывается на значении коэффициента теплопроводности — теплопроводность жидкого воздуха значительно выше.

Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Таблица 1

Металл Коэффициент теплопроводности металлов при температура, °С
— 100 100 300 700
Алюминий 2,45 2,38 2,30 2,26 0,9
Бериллий 4,1 2,3 1,7 1,25 0,9
Ванадий 0,31 0,34
Висмут 0,11 0,08 0,07 0,11 0,15
Вольфрам 2,05 1,90 1,65 1,45 1,2
Гафний  — 0,22 0,21
Железо 0,94 0,76 0,69 0,55 0,34
Золото 3,3 3,1 3,1
Индий 0,25
Иридий 1,51 1,48 1,43
Кадмий 0,96 0,92 0,90 0,95 0,44 (400°)
Калий 0,99 0,42 0,34
Кальций 0,98
Кобальт 0,69
Литий 0,71 0,73
Магний 1,6 1,5 1,5 1,45
 Медь 4,05 3,85 3,82 3,76 3,50
Молибден 1,4 1,43  — 1,04 (1000°)
Натрий 1,35 1,35 0,85 0,76 0,60
Никель 0,97 0,91 0,83 0,64 0,66
Ниобий 0,49 0,49 0,51 0,56
Олово 0,74 0,64 0,60 0,33
Палладий 0,69 0,67 0,74
Платина 0,68 0,69 0,72 0,76 0,84
Рений 0,71
Родий 1,54 1,52 1,47
Ртуть 0,33 0,09 0.1 0,115
Свинец 0,37 0,35 0,335 0,315 0,19
Серебро 4,22 4,18 4,17 3,62
Сурьма 0,23 0,18 0,17 0,17 0,21
Таллий   0,41 0,43 0,49 0,25 (400 0)
Тантал 0,54 0,54
Титан 0,16 0,15
Торий 0,41 0,39 0,40 0,45
Уран 0,24 0,26 0,31 0,40
Хром 0,86 0,85 0,80 0,63
Цинк 1,14 1,13 1,09 1,00 0,56
Цирконий 0,21 0,20 0,19

Удельная теплоёмкость

удельная теплоёмкость, удельная теплоёмкость 8 классУде́льная теплоёмкость — отношение теплоёмкости к массе, теплоёмкость единичной массы вещества (разная для различных веществ); физическая величина, численно равная количеству теплоты, которое необходимо передать единичной массе данного вещества для того, чтобы его температура изменилась на единицу.

В Международной системе единиц (СИ) удельная теплоёмкость измеряется в джоулях на килограмм на кельвин, Дж/(кг·К). Иногда используются и внесистемные единицы: калория/(кг·К) и т.д.

Удельная теплоёмкость обычно обозначается буквами c или С, часто с индексами.

На значение удельной теплоёмкости влияет температура вещества и другие термодинамические параметры. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Кроме того, удельная теплоёмкость зависит от того, каким образом позволено изменяться термодинамическим параметрам вещества (давлению, объёму и т. д.

); например, удельная теплоёмкость при постоянном давлении (CP) и при постоянном объёме (CV), вообще говоря, различны.

Урок 108 (осн). Теплоемкость тела. Удельная теплоемкость веществаУрок 108 (осн). Теплоемкость тела. Удельная теплоемкость вещества

Формула расчёта удельной теплоёмкости: где c — удельная теплоёмкость, Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), m — масса нагреваемого (охлаждающегося) вещества, ΔT — разность конечной и начальной температур вещества. Удельная теплоёмкость может зависеть (и в принципе, строго говоря, всегда – более или менее сильно – зависит) от температуры, поэтому более корректной является следующая формула с малыми (формально бесконечно малыми) и :

  • 1 Значения удельной теплоёмкости некоторых веществ
  • 2 См. также
  • 3 Примечания
  • 4 Литература
  • 5 Ссылки

Значения удельной теплоёмкости некоторых веществ

воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,903
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,377
олово твёрдое тело 0,218
медь твёрдое тело 0,385
молибден твёрдое тело 0,250
сталь твёрдое тело 0,462
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
ртуть жидкость 0,139
азот газ 1,042
нефтяные масла жидкость 1,67 — 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373 К (100 °C) газ 2,020
вода жидкость 4,187
лёд твёрдое тело 2,060
сусло пивное жидкость 3,927
асфальт 0,92
полнотелый кирпич 0,84
силикатный кирпич 1,00
бетон 0,88
кронглас (стекло) 0,67
флинт (стекло) 0,503
оконное стекло 0,84
гранит 0,790
талькохлорит 0,98
гипс 1,09
мрамор, слюда 0,880
песок 0,835
сталь 0,47
почва 0,80
древесина 1,7

См. также

  • Теплоёмкость
  • Объёмная теплоёмкость
  • Молярная теплоёмкость
  • Скрытая теплота
  • Теплоёмкость идеального газа
  • Удельная теплота парообразования и конденсации
  • Удельная теплота плавления

Примечания

  1. Для неоднородного (по химическому составу) образца удельная теплоемкость является дифференциальной характеристикой , меняющейся от точки к точке.

    Зависит она в принципе и от температуры (хотя во многих случаях изменяется достаточно слабо при достаточно больших изменениях температуры), при этом строго говоря определяется – вслед за теплоёмкостью – как дифференциальная величина и по температурной оси, т.е.

    строго говоря следует рассматривать изменение температуры в определении удельной теплоёмкости не на один градус (тем более не на какую-то более крупную единицу температуры), а на малое с соответствующим количеством переданной теплоты . (См. далее основной текст).

  2. Кельвины (К) здесь можно заменять на градусы Цельсия (°C), поскольку эти температурные шкалы (абсолютная и шкала Цельсия) отличаются друг от друга лишь начальной точкой, но не величиной единицы измерения.

Ссылки

  • Таблицы физических величин. Справочник, под ред. И. К. Кикоина, М., 1976.
  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.
  • E. М. Лифшиц Теплоёмкость // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: «Советская энциклопедия», 1998. — Т. 2.

отсюда

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда. Читать далее →

Какой же все таки поставить радиатор? Я думаю каждый из нас задавался таким же вопросом придя на рынок или в магазин запчастей, осматривая огромный выбор радиаторов на любой вкус, удовлетворяющий даже самого извращенного привереды. Хочешь двух рядный, трех рядный, побольше, поменьше, с крупной секцией с мелкой, алюминиевый, медный. Вот именно из какого металла изготовлен радиатор и пойдет речь.

Одни считают, что медь. Это своеобразные староверы, так бы назвали их в XVII веке. Да, если взять не новые автомобили XX века, то тогда повсеместно устанавливались медные радиаторы. Не зависимо от марки и модели, была ли это бюджетная микролитражка или тяжеловесный многотонный грузовик. Но есть и другая армия автовладельцев утверждая что радиаторы изготовленные из алюминия лучше медных. Потому как их устанавливают на новые современные автомобили, на сверхмощные двигатели требующие качественного охлаждения.

И что самое интересное они все правы. И у тех и у других есть свои плюсы и естественно минусы. А теперь небольшой урок физики. Самым отличным показателем, на мой взгляд, являются цифры, а именно коэффициент теплопроводности. Если сказать по простому то это способность вещества передавать тепловую энергию от одного вещества другому. Т.е. у нас имеется ОЖ, радиатор из N-ного металла и окружающая среда. Теоретически чем выше коэффициент тем быстрее радиатор будет забирать тепловую энергию у ОЖ и быстрее отдавать в окружающую среду.

Итак, теплопроводность меди составляет 401 Вт/(м*К), а алюминия — от 202 до 236 Вт/(м*К). Но это в идеальных условиях. Казалось бы медь выиграла в данном споре, да это «+1» за медные радиаторы. Теперь кроме всего необходимо рассмотреть собственно конструкцию самих радиаторов.

Медные трубки в основе радиатора, так же медные ленты воздушного радиатора для передачи полученного тепла в окружающую среду. Крупные ячейки сот радиатора позволяют снизить потери скорости воздушного потока и позволяют прокачать большой объем воздуха за единицу времени. Слишком малая концентрация ленточной части радиатора снижает эффективность теплопередачи и увеличивает концентрацию и силу локального нагрева радиатора.

Я нашел два вида радиаторов в основе которых лежат алюминиевые и стальные трубки. Вот еще не маловажная часть, т.к. коэффициент теплопроводности стали очень мал по сравнению с алюминием, всего лишь 47 Вт/(м*К). И собственно только из-за высокой разности показателей, уже не стоит устанавливать алюминиевые радиаторы со стальными трубками. Хотя они прочнее чистокровных алюмишек и снижают риски протечки от высокого давления, например при заклинившем клапане в крышке расширительного бачка. Высокая концентрация алюминиевых пластин на трубках увеличивает площадь радиатора обдуваемого воздухом тем самым увеличивая его эффективность, но при этом увеличивается сопротивление воздушного потока и снижается объем прокачиваемого воздуха.

Ценовая политика же на рынке сложилась таким образом что медные радиаторы значительно дороже алюминиевых. Из общей картины можно сделать вывод что и те и другие радиаторы по своему хороши. Какой же все таки выбрать? Этот вопрос остается за вами.

Проект «Как утеплить окна?»

Вы когда-нибудь интересовались, почему комнаты с толстыми занавесками сохраняют больше тепла в зимнее время? Если вы хотите снизить содержание углекислого газа в своём доме или просто помочь сэкономить деньги своей семьи, тогда знания о том, как работает теплоизоляция, очень важны! Какой тип оконного покрытия позволит сохранить тепло в комнате?

Что нам понадобится:

  • 4 маленькие картонные коробки одинаковых размеров;
  • 4 литровых бутылок с водой;
  • 4 недорогих термометра;
  • целлофан;
  • тонкий материал для занавесок;
  • плотный материал для занавесок;
  • линейка;
  • карандаш;
  • ножницы;
  • клейкая лента;
  • маленькая воронка;
  • двусторонняя клейкая лента;
  • изолента или упаковочный скотч;
  • кастрюля;
  • плита;
  • вода;
  • блокнот и ручка.

Ход эксперимента:

  1. Вырежьте большое «окно» с одной стороны в трёх коробках. Окна должны быть одинаковых размеров, поэтому, прежде чем отрезать, используйте линейку и нанесите контуры карандашом. В четвёртой коробке не вырезайте ничего – это модель комнаты без окон.
  2. Закройте внутреннюю часть окна целлофаном, прикрепив его при помощи клейкой ленты.
  3. Сделайте занавески из каждого материала. Они должны полностью закрыть окно. Прикрепите занавеску из тонкого материала с внутренней стороны одной коробки. Используйте двусторонний скотч. Аналогичным образом прикрепите плотный материал ко второй коробке. Третью коробку с окном оставьте в таком виде, ничего не прикрепляя.
  4. Налейте воду из пластиковых бутылок в кастрюлю и попросите кого-то из взрослых вскипятить ее. Пусть вода немного остынет, чтобы вы не обожглись, если она расплескается.
  5. При помощи воронки налейте горячую воду назад в каждую бутылку. Старайтесь, чтобы во всех бутылках было одинаковое количество воды. Часть ее испарилась во время кипячения, поэтому бутылки не будут полными.
  6. Замерьте термометром температуру воды в каждой бутылке и запишите результаты в блокнот.
  7. Поместите по одной бутылке в каждую коробку и запечатайте при помощи упаковочного скотча. Оставьте коробки на улице вечером. Лучше всего это делать перед заходом солнца. Помните, что ваша цель – определить, сколько тепла потеряет каждая коробка, поэтому ставить коробки на солнце вам не выгодно.
  8. Через три часа откройте коробки и измерьте температуру каждой бутылки. Обязательно записывайте результаты своих наблюдений.
  9. Что вы заметили? Насколько долго бутылки сохраняли тепло? Какие коробки оказались более эффективными в плане сохранения тепла?

Вывод:

Окно любого вида способствует тому, что часть тепла утрачивается, поэтому коробка без окна оказалась самой эффективной. Однако коробка с окном и занавеской из плотного материала оказалась эффективнее, по сравнению с занавеской из тонкого материала. Коробка с окном без занавесок потеряла тепло больше всего. Почему? Плотные занавески обеспечивают утепление окна более эффективно, нежели обычные занавески из тонкого материала. Почему? Один из способов перемещения тепла – через проводимость, когда энергия из более тёплого места перемещается в холодное. Однако плотные материалы являются хорошими изоляторами. Они формируют условия, при которых теплопередача ухудшается. Довольно интересно заметить, что в данном опыте лучший изолятор – отсутствие окон и занавесок. Потому что тепло не может передаваться в вакууме! Именно поэтому производители изолирующих контейнеров для еды и напитков изготавливают две фляги, помещают одну в другую, и извлекают весь воздух между ними. Тепло способно эффективно передаваться только к верхнему контейнеру. Поэтому проводимость в данном случае минимальна.

Так насколько меньше энергии может использовать среднестатистическая семья, если повесит более плотные занавески на окна? Окупится ли приобретение изолирующих занавесок? Изготовители занавесок оценивают, что каждый домовладелец может сэкономить до 25% тепла. Министерство энергетики России рекомендует использовать энергосберегающие окна и занавески для экономии денег. Можете ли вы найти какие-либо другие методы экономии? Задействуйте творческое мышление и применяйте на практике новые методы!

Пеноплекс или минеральная вата

Физические показатели минеральной ваты:

  • плотность – варьируется в широких пределах и может быть от 10 до 300 кг/м3;
  • теплопроводность (при плотности около 35 кг/м3) – 0.040-0.045 Вт/м*К;
  • поглощение влаги – более 1% (зависит от плотности);
  • паропроницаемость – 0.4-0.5 мг/час*м*Па;
  • максимальная температура выдерживания 450 С и выше.

Анализ указанных величин показывает то, что худшие показатели теплопроводности минеральной ваты скомпенсированы лучшей паропроницаемостью, стойкостью к высокой температуре и негорючестью. Использование мин. ваты оправдано именно в тех условиях, где важны перечисленные параметры.
Использование стекловатных утеплителей целесообразно применять в гаражах, в мастерских, в промышленных объектах, везде там, где существует повышенный риск пожара. Влажные помещение, такие как сауны, бани и бассейне лучше утеплять тоже при помощи минеральных утеплителей, так в этом случае важна паропроницаемость изолятора.

Экологическая безопасность утеплителей на основе полистирола и минеральной ваты зависит от условий применения. Полистирольные производные в случае пожаров могут поддерживать горение, при этом выделяют токсичный дым. Минеральные изоляторы тепла устойчивы к высоким температурам и не разлагаются, но со временем могут стареть и выделять пыль, в виде составляющих материал, микроволокон. Наружный метод утепления стен при помощи базальтовой ваты, в этом плане, безопасен.

Проект утепления должен учитывать возможное воздействие воды. Минеральные материалы подвержены большему накоплению жидкости, при этом их теплопроводность будет повышена.

Допустимые значения

Выполняя теплотехнический расчет наружной стены, учитывают также и регион, в котором будет располагаться дом:

  • Для южных регионов с теплыми зимами и небольшими перепадами температур можно возводить стены небольшой толщины из материалов со средней степенью теплопроводности – керамический и глиняный обожженный одинарный и двойной, кирпич, пено- и газобетон большой плотности. Толщина стен для таких регионов может быть не более 20 см.
  • В то же самое время для северных регионов целесообразнее и экономически выгоднее строить ограждающие стеновые конструкции средней и большой толщины из материалов с большим термическим сопротивлением – оцилиндрованное бревно, газо- и пенобетон средней плотности. Для таких условий возводят стеновые конструкции толщиной до 50–60 см.
  • Для регионов с умеренным климатом и чередующимися по температурному режиму зимами подходят стены из материалов с высоким и средним значением термического сопротивления – газо- и пенобетон, брус, оцилиндрованное бревно среднего диаметра. В таких условиях толщина стеновых ограждающих конструкций с учетом утеплителей составляет не более 40–45 см.
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий