Удельные сопротивления популярных проводников (металлов и сплавов)

Что влияет на сопротивление медного провода

Электрический импеданс медного кабеля зависит от нескольких факторов:

  • Удельного сопротивления;
  • Площади сечения проволоки;
  • Длины провода;
  • Внешней температуры.

Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.

Зависимость сопротивления

Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.

Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения

Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.

Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.

Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.

Таблица удельного сопротивления

Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.

Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».

Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения

Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.

Выводы

Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.

Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление

Температурная корреляция

Что такое мультиметр

Мультиметр или мультитестер — это компактный, эргономичный и многофункциональный прибор для проведения замера основных параметров электрической сети в любых целях. Все мультиметры позволяют с определенной точностью производить измерения силы тока, напряжения, сопротивления и даже температуры с помощью своих щупов.

Мультиметры бывают двух видов:

  • Аналоговые, которые выводят результаты измерений с помощью механических инструментов отображения: стрелок, столбиков и цены делений, показывающей количественную характеристику измеряемой величины;
  • Цифровые. Наиболее часто используемые типы приборов, вывод информации у которых производится через встроенный дисплей, а все данные рассчитываются в цифровом виде.

Виды резисторов

Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.


Общий вид элементов

Классификацию резисторов можно провести по следующим критериям:

  • назначение элемента;
  • тип изменения сопротивления;
  • материал изготовления;
  • вид проводника в элементе;
  • ВАХ – вольт-амперная характеристика;
  • способ монтажа.

Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.

Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.

Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.

Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.

При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:

  • графитовые смеси;
  • металлопленочные (окисные) ленты;
  • проволока;
  • композиционные компоненты.

Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.

Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным

Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

  • напряжения (варисторы);
  • температуры (терморезисторы);
  • уровня магнитного поля (магниторезисторы);
  • величины освещённости (фоторезисторы);
  • коэффициента деформации (тензорезисторы).

Нелинейность вольт-амперной характеристики расширило возможности их применения.

Способ монтажа может быть:

  • печатным;
  • навесным;
  • интегрированным.

При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.

Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.

Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.

О выборе марки кабеля для домашней электропроводки

Делать квартирную электропроводку из алюминиевых проводов на первый взгляд кажется дешевле, но эксплуатационные расходы из-за низкой надежности контактов со временем многократно превысят затраты на электропроводку из меди. Рекомендую делать проводку исключительно из медных проводов! Алюминиевые провода незаменимы при прокладке воздушной электропроводки, так как они легкие и дешевые и при правильном соединении служат надежно продолжительное время.

А какой провод лучше использовать при монтаже электропроводки, одножильный или многожильный? С точки зрения способности проводить ток на единицу сечения и монтажа, одножильный лучше. Так что для домашней электропроводки нужно использовать только одножильный провод. Многожильный допускает многократные изгибы, и чем тоньше в нем проводники, тем он более гибкий и долговечнее. Поэтому многожильный провод применяют для подключения к электросети нестационарных электроприборов, таких как электрофен, электробритва, электроутюг и все остальных.

После принятия решения по сечению провода встает вопрос о марке кабеля для электропроводки. Тут выбор не велик и представлен всего несколькими марками кабелей: ПУНП, ВВГнг и NYM. Кабель ПУНП с 1990 года, в соответствии с решением Главгосэнергонадзора «О запрете применения проводов типа АПВН, ППБН, ПЕН, ПУНП и др., выпускаемых по ТУ 16-505. 610-74 вместо проводов АПВ, АППВ, ПВ и ППВ по ГОСТ 6323-79*» к применению запрещен.

Кабель ВВГ и ВВГнг – медные провода в двойной поливинилхлоридной изоляции, плоской формы. Предназначен для работы при температуре окружающей среды от −50°С до +50°С, для выполнения проводки внутри зданий, на открытом воздухе, в земле при прокладке в тубах. Срок службы до 30 лет. Буквы «нг» в обозначении марки говорят о негорючести изоляции провода. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 35,0 мм2. Если в обозначении кабеля перед ВВГ стоит буква А (АВВГ), то жилы в проводе алюминиевые.

Кабель NYM (его российский аналог – кабель ВВГ), с медными жилами, круглой формы, с негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения, практически одинаковые с кабелем ВВГ. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 4,0 мм².

Как видите, выбор для прокладки электропроводки не велик и определяется в зависимости от того, какой формы кабель более подходит для монтажа, круглой или плоской. Кабель круглой формы удобнее прокладывается через стены, особенно если делается ввод с улицы в помещение. Понадобится просверлить отверстие чуть больше диаметра кабеля, а при большей толщине стены это становится актуальным. Для внутренней проводки удобнее применять плоский кабель ВВГ.

При прокладке квартирной электропроводки, как правило, возникает вопрос и о выборе автоматического выключателя, или, как его часто называют, автомата. Этот вопрос и о выборе счетчика, УЗО, дифференциального автомата подробно освещен в статье сайта «Об электрическом счетчике, УЗО и автоматах защиты».

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Что нам нужно знать?

Всем известно, что кабельная проводка передает электроэнергию от источника – линии электропередачи – к конечному потребителю – жилым, административным зданиям, строительным объектам и т.п.

При движении тока по металлическому проводу часть энергии теряется в нем из-за сопротивления току самого металла.

Поэтому потребителю достается не та часть электричества, которая отошла от источника, а несколько меньшая с учетом потерь при движении тока.

Для обеспечения оптимального распределения нагрузки и стабильности напряжения провод для электрической сети необходимо выбирать определенного размера – сечения, которое определяет диаметр провода.

Падение напряжения будет также зависеть от длины проводника.

Расчетная величина падения не должна сильно отклоняться от исходного нормативного значения.

При увеличении подключаемой нагрузки также возрастают препятствия для прохождения тока.

Кроме того, при небольшой силе тока увеличивается сопротивление проводника, поэтому происходит падение напряжения, ведь все мы из школы помним математическую зависимость:

I = U / R.

Поэтому, если взять два разных по длине проводника одинакового сечения, то потери выше у более длинного из них.

Следовательно, при прокладке токоведущего кабеля для ЛЭП или других электрических установок основным критерием наряду с сечением проводника выступает его длина.

А можно ли рассчитать эту величину в обычных бытовых условиях, используя подручные средства?

Разумеется, определить снижение напряжения мы сможем тремя способами:

  • Используя два вольтметра, производим замер этой величины в на концах кабеля.

  • Измеряем напряжение последовательно на разных участках провода. При этом методе показания могут быть не объективными, т.к. возможно изменение нагрузки или условий работы сети.
  • Подключаем один электроприбор параллельно замеряемому кабелю. Здесь также возможны погрешности, потому что длинные соединительные провода способны влиять на искомую характеристику.

Выбор сечения кабелей

Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:

  • при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
  • сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
  • потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.

При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:

S = (2*I*L)/((1/p)*ΔU.

В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).

С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.

К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.

Измерение сопротивления кабеля мультиметром

При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:

ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,

где:

  • Pа (Pр) – активная (реактивная) мощность;
  • Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.

Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.

Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.

Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.

К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.

Выбор сечения проводника по допустимому нагреву

По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).

Выбор сечения по потерям напряжения

Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.

Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.

Как определить на глаз

Опытные электрики могут определять сечение кабеля на глаз. Каждый проводник ими может быть легко идентифицирован по своему виду и соответствующим этому виду характеристикам. Понятно, что, например, ВВГ провода могут быть только определенных сечений, которые отличаются друг от друга с некоторым шагом. Это регламентируется техническими условиями изготовления или государственным стандартом.

Если же опыта и подобных знаний у человека нет, то определить сечение на глаз помогут точный и развитый глазомер и память. Если мастер хоть раз видел кабель с площадью сечения 1 мм², то, запомнив его размеры, он может мысленно или физически сравнивать другие проводники с ним и делать выводы о том, насколько сильно он отличается в большую или меньшую сторону. Помогает это тогда, когда провода приблизительно одинаковы.

Обратите внимание! Если имеется проводник с сечением 0,5 мм² и толстый кабель размерами площади 5 мм², то определить размеры будет тяжело. Кроме того, профессионалы так не работают

Это опасно и чревато негативными последствиями, связанными с неправильным выбором.

Измерять сечение на глаз — не самая лучшая затея

В материале было рассмотрено, как проверить сечение кабеля штангенциркулем и некоторыми другими способами. Мерить эту величину с помощью специальных приборов — одно из самых правильных решений, так как только они дают возможность определять показатель максимально точно.

Как определить сечение жилы провода?Как определить сечение жилы провода?

Электрика в жилых помещениях

  • Электромонтаж в квартире
  • Электрика в однокомнатной квартире
  • Электрика в двухкомнатной квартире
  • Электрика в трехкомнатной квартире
  • Электрика в четырехкомнатной квартире
  • Электромонтаж на даче
  • Электромонтаж в частном доме
  • Электромонтаж в загородном доме
  • Электромонтаж в деревянном доме
  • Электрика в доме из СИП панелей
  • Электромонтаж в гараже
  • Электромонтаж в коттедже
  • Электромонтаж в таунхаусе
  • Электрика в бане и сауне
  • Электрика в бытовке
  • Электрика в щитовом доме
  • Электрика в брусовом доме
  • Электрика в каменном и кирпичном доме
  • Замена электрики в «Хрущевке»
  • Замена электрики в «Сталинке»
  • Замена электропроводки в панельном доме
  • Временное электроснабжение
  • Монтаж скрытой электропроводки
  • Скрытая проводка в деревянном доме

Как найти длину проводника

Автор Ольга Громышева задал вопрос в разделе Естественные науки Какая формула нахождения длины проводника? и получил лучший ответ

Ответ от Крабочка а формула R=p*L /S. Вот и вычисляй отсюда L

Проверка на длительно допустимый ток и потерю напряжения подробнее.

Найти длину проводника очень просто – достаточно его измерить. Однако, если проводник недоступен или имеет очень большую длину, то его непосредственное измерение может оказаться весьма затруднительным.

— строительная рулетка; — амперметр (тестер); — штангенциркуль; — таблица электропроводности металлов.

Чтобы найти длину проводника, измерьте рулеткой длины его отдельных участков и сложите их. Этот метод подходит для открытой электропроводки и замеров провода во временных кабельных соединениях.

Если электропроводка скрытая, то для нахождения точной длины проводника воспользуйтесь соответствующей электромонтажной схемой. Если таковой схемы нет, то попробуйте косвенно восстановить размещение проводов по положению розеток, выключателей, распределительных коробок и т.п. признакам.

Учтите важное правило электромонтажников: все провода должны прокладываться строго горизонтально или вертикально. Причем, горизонтальные участки провода, как правило, проходят вдоль верхнего края стены (под потолком)

Однако, действительное расположение проводов сможет определить только специальный прибор или опытный электрик.

Если восстановить траекторию скрытой электропроводки невозможно, то измерьте электрическое сопротивление отдельных участков проводника. Для расчетов уточните также сечение проволоки и материал, из которого она состоит. Как правило, это – медь или алюминий. Так как формула для расчета сопротивления: R = ? * L * s, то длину проводника можно рассчитать по формуле:

где: L – длина проводника, R – сопротивление проводника, ? – удельное сопротивление материала из которого сделан проводник, s – площадь поперечного сечения проводника.

При расчете длины проводника учтите следующие параметры и соотношения.

Удельное сопротивление медного провода составляет 0,0154 — 0,0174 ом, алюминиевого: 0,0262 — 0,0278 ом. (Если длина проводника равна 1 метру, а сечение – 1 мм?).

Сечение проводника равняется:

где: ? — число «пи», приблизительно равное 3,14, D – диаметр проволоки (который легко замерить штангенциркулем).

Если провод смотан в катушку, то определите длину одного витка и умножьте на количество витков.

Если катушка имеет круглое сечение, то измерьте диаметр катушки (средний диаметр обмотки, если она многослойная). Затем умножьте диаметр на число «пи» и на количество витков:

d –диаметр катушки, n – количество витков провода.

Удельное сопротивление есть характеристика материала, вещества из которого сделан проводник.

Электрическое сопротивление проводника прямо пропорционально произведению удельного сопротивления материала из которого сделан проводник на его длинну, и обратно пропорционально его сечению.

электрическое сопротивление проводника, Ом
удельное сопротивление материала проводника, Ом·м
длина проводника, Метр
сечение проводника, Метр2

Единица СИ удельного сопротивления

Удельное сопротивление ρ зависит от температуры.

Результат падения напряжения

А что становится результатом этого процесса в фундаментальном смысле?

Давайте посмотрим, что происходит при снижении этой характеристики электрической энергии.

В соответствии с нормативной документацией ПУЭ, потери при движении тока от трансформаторной подстанции до самого отдаленного участка по электрической нагрузке для населенного пункта должны быть не более 9 %.

При этом потери в размере 4 % разрешаются от главного ввода до потребителя электроэнергии, а 5 % – от трансформатора до главного ввода.

В трехфазных коммуникациях нормативный показатель по ГОСТ 29322-2014 составляет 400 В ± 10 % при нормальной эксплуатации линии.

Отклонение этой величины от норматива может приводить к следующим результатам для стационарных объектов или электрических приборов.

  1. Сбои в работе электроустановок, неправильная работа оборудования, выход его из строя, нарушение освещения объекта.
  2. Отключение электроприборов или сбои их корректной работы.
  3. Понижение ускорения вращения у электрических двигателей при старте, потери энергии, отключение устройств при нагреве.
  4. Некорректное распределение электронагрузки от начала линии до удаленного конца провода между объектами потребления.
  5. Работа на 50 % осветительных устройств помещения.

Нормальным значением для потерь при стандартном рабочем режиме электролинии является 5 %.

Эту величину допускается принимать для электросетей на этапе проекта.

Относительно токов большой мощности строятся протяженные электрические магистрали.

Зависимость от геометрии

Но и постоянный ток не так прост, как представляется по некоторым опытам. Все дело в его силе. Известно, что площадь поперечного сечения напрямую связана с силой тока. Но эта закономерность применима не всегда. С определенных значений силы ток все больше устремляется к поверхности проводника, что называется вытеснением тока. По этой причине сопротивление току большой силы меньше у плоских и трубчатых проводников.

Еще лучший результат получается при покрытии серебром. Аналогично проявляются и токи высокой частоты. Для них поверхностный эффект закономерен так же, как и для постоянного тока большой силы. Но и механическая сила, воздействующая на проводник, способна повлиять на его сопротивление. И это неудивительно, поскольку деформации влияют на распределение частиц, которые тормозят электроны.

Этот принцип заложен в основу тензометрии, без которой сегодня невозможно представить машиностроение и другие отрасли промышленности, где важна прочность материалов. Все перечисленные причины, от которых зависит СП, по-разному проявляются у различных материалов. Но для прикладного использования взаимосвязи сопротивления с теми или иными воздействиями разработаны специальные сплавы и химические соединения.

Но в любом случае сопротивление измеряется в Омах и долях Ома, в том числе и кратных 1000, то есть килоом, мегаом. Больше нескольких единиц мегаом сопротивление, как правило, не бывает. Мы постарались показать читателям несколько причин, обуславливающих СП. Надеемся, что полученные знания помогут успешно решить существующие задачи.

Расчёт сопротивления проводника

Выше были рассмотрены упрощенные методики, которые надо корректировать с учетом реальных условий. Так, существенное влияние на проводимость материалов оказывает температура. В серийных проводниках (медь, алюминий) значение данного параметра увеличивается в пропорции 0,3-0,5% на каждый градус. В составах на основе угля и электролитах наблюдается обратный эффект – уменьшение сопротивления.

Без удерживающих струн и других приспособлений для фокусов обеспечивается настоящая левитация с применением сверхпроводимости

Показанный на рисунке эксперимент можно воспроизвести, понизив температуру металла до «абсолютного нуля» (-273°C). При таком экстремальном охлаждении атомарная решетка фиксируется в стабильном положении.

Это состояние создает идеальные условия для перемещения электронов. Отсутствие препятствий сопровождается минимальными потерями, что объясняет перспективность направления для создания эффективных линий передачи энергии. Пример на рисунке демонстрирует улучшенные эксплуатационные параметры транспортных коммуникаций. В данном случае можно исключить силы трения.

Комбинация трубы с безвоздушным пространством и сверхпроводимости улучшает характеристики перспективных транспортных систем

Понятно, что для улучшения экономических показателей необходимо повысить рабочую температуру при сохранении хорошей проводимости. Однако новейшие научные достижения в соответствующей области позволяют рассчитывать на положительный результат в близком будущем.

Следует подчеркнуть! На практике могут понадобится разные технологии вычислений. Например, материал неизвестен. Сложно идентифицировать его по внешним признакам. Для качественного химического лабораторного анализа, кроме соответствующих навыков, необходимо специальное оснащение.

Однако при необходимости нетрудно вывести удельный показатель:

Rуд = R * S /L.

Геометрические параметры измеряют стандартными инструментами (линейкой, штангенциркулем). По типовой схеме измерений с помощью мультиметра уточняют электрическое сопротивление. Для вычисления Rуд пользуются представленной выше формулой. В справочнике выбирают позицию, соответствующую результату расчета. По такой же методике можно определить иные неизвестные значения, например, длину кабеля в подземной трассе.

В реальных расчетах для повышения точности учитывают реактивные компоненты проводников. Например, индуктивность длинной прямой линии определяют по формуле:

И = (m0/2π) * L *(mc * ln(L/r) +1/4m,

где:

  • m – магнитная проницаемость материала (о – постоянная, с – окружающей среды);
  • r и L – радиус и длина проводника, соответственно.

При повышении частоты приходится учитывать растекание тока в поверхностной зоне и вихревые изменения.

Представленные теоретические знания пригодятся для расчета и создания реостата – прибора с регулируемым сопротивлением. Они нужны для предотвращения электротравм с применением точного расчета защитных цепей и специализированных автоматов (предохранителей).

Программа расчета cable 2.1

Ознакомившись с методикой расчета и специальными таблицами, для удобства, вы можете воспользоваться данной программой. Она избавит вас от самостоятельных вычислений и подберет оптимальное сечение кабеля по заданным параметрам.

В программе cable 2.1 имеется два вида расчета:

  1. Расчет сечения по заданной мощности или току.
  2. Расчет максимального тока и мощности по сечению.

Рассмотрим каждый из них.

В первом случае нужно ввести:

  • Значение мощности (в рассмотренном примере 2 кВт).
  • Выбрать род тока, тип проводника, способ прокладки и количество жил.
  • Нажав кнопку «Рассчитать», программа выдаст требуемое сечение, силу тока, рекомендуемый автоматический выключатель и устройство защитного отключения (УЗО).

Расчет сечения по заданной мощности или току

Во втором случае, по определенному сечению проводника, программа подбирает максимально допустимые:

  • Мощность.
  • Силу тока.
  • Рекомендуемый ток автомата защиты.
  • Рекомендуемое УЗО.

Расчет максимального тока и мощности по сечению

Как видим, интерфейс калькулятора довольно простой, а конечные результаты полезны и информативны.

Установка не требуется. Откройте архив и запустите файл «cable.exe».

Температурная зависимость ρ(Т)

Для большинства материалов проведены многочисленные эксперименты по измерению значений удельных сопротивлений. Данные по большинству проводников можно найти в справочных таблицах.

Удельное сопротивление металлов и сплавов, Ом*мм2/м

(при Т = 20С)

Серебро

0,016

Бронза (сплав)

0,1

Медь

0,017

Олово

0,12

Золото

0,024

Сталь (сплав)

0,12

Алюминий

0,028

Свинец

0,21

Иридий

0,047

Никелин (сплав)

0,42

Молибден

0,054

Манганин (сплав)

0,45

Вольфрам

0,055

Константан (сплав)

0,48

Цинк

0,06

Титан

0,58

Латунь (сплав)

0,071

Ртуть

0,958

Никель

0,087

Нихром (сплав)

1,1

Платина

0,1

Висмут

1,2

Чаще всего приводятся значения ρ при нормальной, то есть комнатной температуре 20С. Но оказалось, что при повышении температуры удельное сопротивление возрастает по линейному закону в соответствии с формулой:

$ ρ(Т) = ρ0 * (1 + α*T)$ (6),

где: ρ — удельное сопротивление проводника при температуре 0С, α — температурный коэффициент удельного сопротивления, который тоже имеет для каждого вещества свое, индивидуальное, значение. Из формулы (6) следует, что коэффициент α имеет размерность или .

Рис. 2. Температурная зависимость удельного сопротивления проводника

В соответствии с законом Джоуля-Ленца при протекании электрического тока т выделяется тепло, а значит происходит рост температуры проводника. Кроме этого, в зависимости от области применения, электрические приборы могут работать как при пониженных (минусовых), так и при высоких температурах. Для точных расчетов электрических цепей необходимо учитывать зависимость ρ(Т). Величину α для конкретного материала можно узнать из справочной литературы.

Рис. 3. Справочные значения температурного коэффициента удельного сопротивления проводников

Что мы узнали?

Итак, мы узнали, что величина, характеризующая способность различных материалов по разному проводить электрический ток, называется удельным электрическим сопротивлением. Приведена формула (3) для определения удельного сопротивления проводника ρ. Линейная температурная зависимость удельного сопротивления ρ(Т) описывается формулой (6).

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий