Какое отклонение напряжения в сети считается предельно допустимым

Содержание

Введение

В этой статье мы проанализировали некоторые контрольные точки в распределительной сети города Тиват в Республике Черногория. Здесь также представлены результаты анализа данных точек. Для начала, мы можем посмотреть результаты для контрольной точки под названием высоковольтная линия «Лепетан» 10 кВ. Процесс измерения охватывал вторичные токи и напряжения измерительных трансформаторов тока и напряжения, эти значения записывались и анализировались. Результаты измерений были обработаны и представлены в MS Excel.

В данном случае использовалось следующее измерительное оборудование: ручной анализатор «FLUKE 430» и устройство для непрерывной записи измерительных данных «Анализатор качества электроэнергии MI 2192». После проведения измерений, когда благодаря им проблема была подтверждена, водопроводно-канализационной организации пришлось принять меры, так как именно она является главным виновником того, что результаты не соответствуют требованиям.

Полученные результаты измерений иногда превышали предел предусмотренный стандартами (EN 50160). Превышение возникало, когда запускали насосы. Фактические данные легли в основу разработки имитационной модели. Полученную модель использовали для разработки фильтра для подавления паразитных гармоник в электрических сетях. Представлены результаты применения фильтра. К счастью, водопроводно-канализационная организация установила у себя пассивный фильтр для компенсации соответствующих гармоник.

Определение уровней качества электроэнергии и простейший подход к диверсификации потребителей по требованиям к качеству электроэнергии

В условиях децентрализации энергосистем и необходимости разделения потребителей на отдельные категории в зависимости от требуемой цены и качества электроэнергии уделяется много внимания обеспечению заданного качества электроэнергии на конкретных нагрузках. Одной из функций «гибкой, надёжной и интеллектуальной системы энергоснабжения» является диверсификация потребителей по требуемому качеству электроэнергии. Она необходима для контроля качества электроэнергии при построении аппаратной части «центра управления качеством», которая встраивается в систему распределения электроэнергии для предоставления потребителям нескольких уровней ее качества, которое, в свою очередь, может оцениваться по различным критериям. Далее рассмотрим один из методов контроля качества электроэнергии, который предполагает 3 уровня качества: наивысшее, высокое и нормальное качество. Также вашему вниманию в данном материале будет конфигурация экспериментального устройства центра управления качеством электроэнергии для однофазной нагрузки.

Цели проверки

Полученные результаты позволяют добиться соблюдения заданных в договоре поставщика параметров. Анализ обеспечивает получение данных для составления развернутого отчета о работе системы. Экспертиза выявляет перечень отклонений или их отсутствие. Полученный документ дает основания, для предъявления поставщику обоснованных претензий о несоответствии качества энергии общепринятым нормам. В результате вторая сторона договора устранит все проблемы, и выявленные нарушения в оговоренный промежуток времени.

Измерения обеспечивают расчет коэффициента рациональности использования электричества. Благодаря этому производство выходит на технологичный уровень работы с минимальным расходом ресурсов. При необходимости, из электрической сети устраняются объекты, работающие неэффективно или во вред всей системе.

Проводить исследования стоит для реальных и запланированных систем энергоснабжения. Экспертизу приурочивают к энергетическому аудиту промышленного объекта. Итоги проверки, дают данные для повышения уровня энергетической эффективности в промышленной сфере.

Полученные значения сохраняются и используются при проведении следующего аудита. Специалисты сравнивают данные и делают соответствующие выводы о работе системы.

Разработка правил и стандартов

Для установления минимального уровня качества электроэнергии, который поставщики электроэнергии должны обеспечивать для потребителей, а также для установления уровня иммунитета для оборудования, которое должно нормально работать, если параметры питания соответствуют стандартам, были приняты определённые меры.

Важным шагом в этом направлении явилось создание кривой CBEMA (рис. 18), разработанной Ассоциацией производителей вычислительного и технологического оборудования. Этот стандарт определяет минимальную стойкость компьютерного оборудования к провалам напряжения, микропрерываниям и перенапряжениям.

Эта кривая, хотя и была недавно заменена кривой ITIC Совета индустрии информационных технологий (рис. 19), по-прежнему является основным ссылочным материалом в области качества электроэнергии. Если величина напряжения находится в пределах затемнённой зоны, оборудование должно работать нормально. Если величина напряжения находится ниже допустимой зоны, оборудование может работать неправильно или отключиться. Если величина напряжения находится выше разрешённой зоны, кроме сбоев в работе оборудования могут возникнуть также его повреждения.

Другие организациями по стандартизации (МЭК, CENELEC, IEEE и т.п.) разработали ряд стандартов с теми же целями. В Европе наиболее важными стандартами в области качества электроэнергии являются EN 50160 (CENELEC) и МЭК 61000.

Таблица № 4. Наиболее важные параметры, заданные европейским стандартом EN 50160:2001

Характеристики

Пределы

Частота

должна оставаться в пределах от

49,5 (-1%)до 50,5 (+1%)Гц.

Напряжение

напряжение должно быть в пределах от

90%до 110% от номинального напряжения.

Небаланс напряжения

обратная последовательность должна составлять не более 2%от прямой последовательности.

Гармоники напряжения

КГИ менее 8%

V3 менее 5,0%

V5 менее 6,0%

V7 менее 5,0%

Способы повышения качества

Существует немало методов, которые помогают бороться с проблемами, связанными с плохим качеством электроэнергии. Самыми серьёзными сложностями для потребителей обычно являются не повреждения физического оборудования, а снижение производительности и дорогостоящие простои. Как и в случае с болезнями, значительно проще и дешевле предотвращение заболевания, чем его диагностика и лечение. Некоторые решения, которые помогут свести проблемы к минимуму:

  1. Установка фильтров гармоник. Фильтрующие характеристики должны быть тщательно подобраны для каждого конкретного оборудования.
  2. Разделение чувствительных электронных нагрузок. Выделенные контуры означают раздельные фазные и нейтральные цепи и индивидуальное заземление.
  3. Ограничение количества розеток в цепи. Это сводит к минимуму падение напряжения и возможность взаимодействия оборудования.
  4. Применение металлических экранов. Должным образом заземлённые каналы обеспечивают надёжное экранирование.
  5. Качественная молниезащита.
  6. Установка устройств защиты от скачков напряжения. Сетевой фильтр — один из самых недорогих методов, помогающих уберечь оборудование.
  7. Установка бесперебойного источника питания. Он не только обеспечивает работу оборудования во время перебоев с подачей электроэнергии, но и служит защитой от скачков напряжения.
Обзор. Ваттметр TS-836A из Китая (энергометр, измеритель мощности)Обзор. Ваттметр TS-836A из Китая (энергометр, измеритель мощности)

Можно сказать, что в последнее десятилетие проблемы энергоснабжения потребителями стали ощущаться острее, хоть принципиально качество систем сетевого питания в мире не изменилось. Перемены заключаются в том, что современное общество стало крупным потребителем интеллектуальной электроники. Новые технологии обострили проблемы энергоснабжения, которые были всегда.

Понятия «фактический уровень напряжения» и «фактическое напряжение» — это разные понятия

Для определения величины тарифа на передачу электроэнергии важно установить на каком «фактическом уровне напряжения» подключён потребитель электроэнергии. Не на каком «фактическом напряжении. », а на каком «фактическом УРОВНЕ напряжения »

Это не одно и тоже

», а на каком «фактическом УРОВНЕ напряжения ». Это не одно и тоже.

Эти понятия становятся, практически тождественными при ситуации, когда граница балансовой принадлежности потребителя находится НЕ на ИСТОЧНИКЕ ПИТАНИЯ.

В этом случае за «напряжение

», относящееся к соответствующему «уровню напряжения », принимают «фактическое напряжение » ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.

То есть «фактическое напряжение» ЭПУ совпадает с «напряжением», которое относится к тому или иному «уровню напряжению». «Фактическое напряжение

» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО ПРЕДОПРЕДЕЛЯЕТ «фактический УРОВЕНЬ напряжения», используемый для выбора величины тарифа на передачу электроэнергии.

Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится НЕ на источнике питания, то напряжение, относящееся к соответствующему «уровню напряжения

», будет тоже 6 кВ. Поэтому, «уровень напряжения» будет «средним вторым» (СН2), так как напряжение ЭПУ полностью совпадает с напряжением, относящимся ко второму «уровню напряжения» (СН2). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: напряжения ЭПУ и напряжения, относящегося к соответствующему «уровню напряжения ».

Далее, исходя из «фактического уровня напряжения», по тарифному меню ТСО, определяем величину тарифа на передачу электроэнергии, соответствующую уровню напряжения — среднее второе напряжение (СН2).

Совсем иная ситуация, когда граница балансовой принадлежности потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ.

Отклонение от номинального напряжения в частном секторе

  • Отгорание нулевого рабочего проводника в трансформаторной подстанции
  • Несимметричная нагрузка по линии электропередач. В основном по улице проходит 3 фазы и энергетики стараются равномерно распределить нагрузку по фазам. Очень часто бывает, что это было сделано давно и не соответствует действительности. В итоге получается, что одна фаза перегружена и происходит падение напряжения, может 190 В или 180В, но тем не менее это не соответствует норме.
  • Сварочные работы у соседа могут повлиять на величину напряжения
  • Удар молнии

Справочная информация. Если дом находится вблизи трансформаторной подстанции, то величина напряжения может быть близка к 230 В и больше, но это в пределах нормы. Это специально делают энергетики, что бы в конце линии не было сильного падения напряжения.

Запомните! Коммутационно-защитная аппаратура (пакетный переключатель, автоматический выключатель, УЗО) не защищает электрическую сеть от перепадов напряжения.

Многофункциональные измерительные приборы

Современные многофункциональные приборы обеспечивают получение результатов не только в цифровом формате, но и в денежном эквиваленте. Модели отличаются рядом показателей:

  • задачи;
  • область применения;
  • функционал.

Модели нового поколения ускоряют процесс получения значений по прогнозированию, фиксации, устранению и предотвращению возникновения новых проблем в работе системы. С помощью специальных аппаратов, специалисты определяют механические и электрические параметры.

Отсутствие контроля приводит к частым неполадкам, сбоям энергосистемы и чрезмерным расходам электричества. Общего показателя эффективности работы сети недостаточно для проведения глубинного анализа. Большие предприятия обращаются в сертифицированные службы для осуществления контроля над всеми компонентами рабочей зоны.

Важно анализировать нагрузки в динамике. Это позволит выявить уровень износа электросети и своевременно провести мероприятия по устранению потенциальных угроз

При выявлении вины поставщика, потребитель будет лишен необходимости брать на себя обязанность по решению проблем.

Что влияет на характеристики питающей сети?

Качество электроэнергии зависит от огромного числа факторов, изменяющих показатели сверх установленных нормативами пределов. Так, напряжение может оказаться завышенным из-за аварии на подстанции. Заниженные значения появляются в вечернее время суток или в летний сезон, когда люди возвращаются домой и включают телевизоры, электрические плиты, сплит-системы.

Качество электроэнергии согласно ГОСТам может незначительно колебаться. В очень плохих питающих сетях потребителям приходится пользоваться стабилизаторами напряжения. Контроль над характеристиками возложен на Роспотребнадзор, куда можно обращаться при возникающих несоответствиях.

Качество электроэнергии может зависеть от следующих факторов:

  • Суточных колебаний, связанных с неравномерным подключением потребителями либо с влиянием приливов и отливов на морских станциях.
  • Изменениями воздушной среды: влажности, образование льда на питающих проводах.
  • Изменением ветра, когда питание вырабатывают ветровики.
  • Качеством проводки, со временем она изнашивается.

Критерии оценки качества электроснабжения

На оценку качества электроэнергии влияет большое количество различных показателей.

  • отклонение напряжения;
  • колебания напряжения;
  • импульсное напряжение;
  • отклонение частоты;
  • провал напряжения;
  • доза фликера;
  • коэффициент временного перенапряжения.

Отклонение напряжения

Величина рассчитывается специальным коэффициентом, который характеризует установившееся отклонение по отношению к номинальным. Убедиться в надлежащем качестве можно с помощью специального измерительного приемника электричества.

Колебания напряжения

Величина характеризует отклонения амплитуды колебания электрического тока в проводах. Колебание напряжения – это составной параметр качества. Чтобы его вычислить потребуется предварительно рассчитать:

  • продолжительность и частоту отклонений;
  • дозу колебаний;
  • размах изменений.

Для вычисления параметров также потребуется специальное измерительное оборудование высокой точности.

Импульсное напряжение

Величина проявляется в виде непродолжительного увеличения амплитуды электричества. Как правило, причиной таких скачков становятся коммутационные процессы или непогода за окном. Подобные состояния сети характеризуются непредсказуемостью, следовательно, нормирование импульсов не предусмотрено.

Отклонение частоты

Для этого параметра в сетях общего использования установлено значение 50 Гц. Нормативные стандарты допускают уменьшение или увеличение частоты на 2-4%. Если допустимые отклонения превышены, наблюдается выход из строя электротехнического оборудования, электрогенераторы дают сбои.

Провал напряжения

Понятие характеризуется как значительное снижение амплитуды с последующим восстановлением за короткий промежуток времени. Основные провоцирующие факторы – резкое увеличение нагрузки или КЗ.

Данный показатель описывается следующими характеристическими особенностями:

  • частота отклонений за единицу времени;
  • сила проседания напряжения – в некоторых случаях она может стремиться к нулю;
  • продолжительность.

Доза фликера

Параметр показывает, какое воздействие на организм человека оказывает мерцание осветительных приборов в результате изменения параметров электричества. Вычисляется значение при помощи специального измерительного оборудования.

Коэффициент временного перенапряжения

Этот термин обозначает, насколько фактическая амплитуда выше допустимых значений. Основные провоцирующие факторы – коммутационные процессы и КЗ.

Принцип работы анализатора качества электроэнергии

Прибор выполняет функцию проверки величин и уровень соответствия требованиям. Принцип его работы основан на измерителе электрических величин. Аппарат фиксирует значения тока и напряжения за короткие интервалы времени.

  • постоянное отклонение напряжения;
  • пиковые нагрузки и токи;
  • природа переходных процессов в сети;
  • фиксация времени с наибольшими потреблениями электрической энергии;
  • искажения кривых тока;
  • падения и провалы.

Анализаторы выпускаются в мобильной и стационарной форме. Они могут использоваться систематически или эпизодически, в зависимости от поставленной цели. Комплексная проверка корректности работы оборудования – это залог длительной и эффективной работы техники на предприятии. Своевременное выявление неполадок позволяет устранить неисправность до возникновения серьезных проблем.

Контроль за работой техники осуществляется с целью выявления дефектов в электрической сети и их устранения. Для выполнения задания требуется подсоединить анализатор к системе. Места контроля – это точки подключения к потребительской сети. При работе с простыми системами допускается подсоединение в местах, расположенных максимально близко к этим точкам.

Полученная информация обрабатывается с помощью математических алгоритмов. Это позволяет достигнуть ряда целей:

  • рассчитать параметры работы;
  • проанализировать качество электроэнергии;
  • установить количество энергии.

Показатели измеряются на определенном отрезке времени. Низкое напряжение – это самая частая причина плохого качества энергии. Это значение анализируется дважды в год. Другие нормы определяются один раз в 12 месяцев.

Ущерб при уменьшении качества электрической энергии

Виды ущерба при ухудшении КЭ делится на электромагнитный и технологический.

Электромагнитный ущерб:

  1. Неэффективность генерирующих процессов, большие потери при передаче и использовании энергии.
  2. Снижения времени эксплуатации оборудования, преждевременный его выход из строя, из-за нарушения режимов работы и износа изоляции.
  3. Преждевременный износ и выход из строя средств РЗАиГ.

Технологический ущерб:

  1. Понижение производительности технологических процессов.
  2. Прекращение выполнения производственных работ, влекущее значительные затраты на восстановление.
  3. Выход из строя оборудования.
  4. Брак получаемой продукции.

Примеры порчи электрооборудования при несоответствии параметров качества электроэнергии:

  1. Понижение напряжения на 10% время эксплуатации асинхронного двигателя уменьшается в 2 раза.
  2. Несимметрия напряжения в 2% срок эксплуатации АД снижается на 10% СТД – на 16,2%, силовых трансформаторов на 4%.
  3. Несинусоидальное напряжение влечет увеличение токов утечки в кабельной изоляции на 43%.

Снижение сроков службы оборудования влияет на надежность электроснабжающей системы.

Колебание напряжения

Одним из параметров качества электроэнергии является колебание напряжения.

Колебания напряжения характеризуются следующими показателями:

  • размахом изменения напряжения;
  • дозой фликера.

Значения колебания напряжения имеют те же самые нормы, что и отклонение напряжения с единственным отличием: длительность процесса менее одной минуты. Нормально допустимым колебанием

напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231 В).Предельно допустимым колебанием напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).

Замечание:

не следует путать требования ГОСТа к качеству электроэнергии в сети (ГОСТ Р 54149-2010 «Электрическая энергия. Совместимость технических средств электромагнитная») и ГОСТов, описывающих качество электропитания для электрических приборов (напр. ГОСТ Р 52161.2.17-2009 «Безопасность бытовых и аналогичных электрических приборов»). ГОСТ качества электроэнергии предъявляет требования по сути к поставщику электрической энергии, и именно на этот ГОСТ можно опереться, если нужно предъявить требования к поставщику при плохом электроснабжении. А требования к качеству электропитания в паспортах приборов определяют требование к приборам работать нормально в более широком диапазоне значений параметров тока. Для приборов, как правило, закладывается диапазон по напряжению от -15% до +10% от номинального.

Из чего сделана электроэнергия?

  • Генератор (источник) электроэнергии,
  • Линия электропередачи,
  • Нагрузка.

Нас, конечно же, интересует питание нагрузки. Итак, посмотрим, что мы можем измерить и посмотреть реально в питающей сети:

Напряжение

Это – самый важный параметр, определяющий в основном качество и характеристики всей энергосистемы. Будем рассматривать трехфазную систему, не смотря на то, что в быту мы привыкли к одной фазе.

Старый ГОСТ 13109-97 “Нормы качества электрической энергии в системах электроснабжения общего назначения” гласил, что действующее (или среднеквадратическое, что для синуса одинаково) фазное напряжение в питающей сети должно составлять 220 ±10% = 198…242 В. Однако, новый ГОСТ 29322-2014 “Напряжения стандартные” “повысил” напряжение до 230 В ±10 % = 207…253 В.

При этом разрешено действие напряжения и 220, и 230 В (ГОСТ 29322-2014, Табл.1, Прим. а). Линейные напряжения (между фазами) будут соответственно 380 и 400 В.

Что реально происходит в электросети, видно на экране анализатора качества электроэнергии Hioki 3197:

Линейные напряжения в трехфазной сети

Напряжение колеблется около среднего уровня 395 В с отклонением 2..3 В за период измерения около 12 минут. Судя по одинаковым провалам на всех фазах, где-то примерно каждые пол минуты на 5-10 секунд включается мощная трехфазная нагрузка. Что бы это могло быть?

Это линейные напряжения, фазные в солидных сетях не измеряются. Но если это нужно, можно легко перевести фазное в линейное напряжение и обратно, используя формулу:

Формула линейного напряжения, зависимость от фазного

Для понимания – Uл = 380 В, Uф = 220 В, а формула “наоборот” будет выглядеть так:

Формула зависимости фазного напряжения от линейного

График, приведенный выше, может записываться в память прибора и длиться до нескольких дней. Таким образом можно проанализировать, как меняется напряжение в течение суток, и подобрать стабилизатор, либо вообще его не ставить.

Кроме того (что очень важно!), можно зафиксировать и посмотреть все “артефакты” на напряжении. Например, скачки напряжения, провалы, пусковые токи, и т.д

Пороги событий устанавливаются в настройках.

Пример экрана, на котором отображены события:

События и деталировка на экране анализатора качества

Ток

Когда-то в детстве отец мне купил мой первый тестер – ТЛ-4М, за 40 рублей. Я мерил всё подряд, пока мою голову не посетила “гениальная” идея – измерить ток в розетке. Включил максимальный предел – 3 А, и…

В итоге – выбило пробки, в тестере сгорел шунт, а я понял – что ток измеряется всегда только ЧЕРЕЗ нагрузку. С тех пор средства измерения тока сильно шагнули вперед, и для этого используются только токовые клещи (трансформаторный метод), шунты практически не применяются.

Ток, точнее, его значение, форма и составляющие, значительно зависит от нагрузки. Например, вот как выглядит форма напряжения и тока при работе диммера:

Напряжение в сети и ток ЧЕРЕЗ диммер

Естественно, присутствуют гармоники тока и напряжения, которыми определяется форма.

Гармоники напряжения и тока

Гармоники напряжения и тока можно увидеть в графическом виде, как на скрине выше, так и в виде таблицы – с 1-й до 50-й гармоники. И для однофазной, и для трехфазной сети.

Например, вот такая табличка:

Список гармоник тока и напряжения

Частота

Все знают, что частота питающего напряжения у нас в розетке равна 50 Гц. Это означает, что 50 раз в секунду всё повторяется. Иначе говоря, длительность периода напряжения равна 20 мс.

Вас когда-нибудь било током? Помните, как трясло тело? Вот – это те самые 50 Гц. Хотя, по моим ощущениям, трясёт с частотой 10-20 Гц. Б-р-р.

Если точнее, то согласно ГОСТ 29322-2014 частота напряжения должна быть 50 ±0,2 Гц. То есть, от 49,8 до 50,2 Гц.

Пожалуй, частота – единственный параметр, на который ничего не влияет. И её стабильность зависит только от работы электростанции.

Вот как график частоты выглядит на экране анализатора качества электроэнергии:

Hioki 3197 – Частота питающей сети

Медленные изменения напряжения

Медленными называют изменения, длительность которых происходят на время, более 1 минуты. Это как раз вписывается в концепцию включенного чайника. Закипел, отключился – возмущение прекратилось, свет снова горит ярко. Знакомая картина?

При измерениях определяется количество времени, в которое напряжение было выше или ниже 10% от стандартного номинального. Для бытовых сетей это 220 или 380 В. Данные усредняются с дискретностью в 10 минут, а измерения производят в течение недели.

Колебания напряжения

Этот параметр тоже характеризует изменения величины напряжения, но только те, которые происходят за интервал менее 1 минуты.

Для оценки качества напряжения по этому параметру используют понятие фликера. Физический смысл в его в том, что он характеризует зрительные ощущения человека от восприятия мерцания источника света.

Различают кратковременную (измеренную в интервале времени 10 минут) и длительную (в интервале 2 часов) дозу фликера. Их величины, наблюдаемые в интервале в 1 неделю, не должны быть соответственно больше 1,38 и 1,0. Расчет ведется по довольно сложным формулам.

Виды защиты от непредсказуемых изменений параметров сети

Приборы для защиты от перепадов напряжения

Энергопоставляющая компания должна заботиться о надлежащем качестве поставляемых услуг, которые соответствуют установленным нормативным документам. Но при этом каждый домовладелец в личном порядке может обезопасить свои бытовые приборы от скачков напряжения специальными видами оборудования:

  • Источники бесперебойной электроэнергии способны поддерживать рабочее состояние некоторых видов бытовой техники в течение заданного времени. Например, подключение к компьютеру такого устройства позволяет корректно завершить его работу и сохранить все требуемые файлы.
  • Оборудование, предназначенное для защиты от перепадов напряжения. Принцип действия подобен работе реле. Если один из параметров электрической цепи достигает критических отметок, помещение автоматически обесточивается.
  • Стабилизатор напряжения контролирует, чтобы величина напряжения не выходила за пределы заданных параметров. Обеспечивает надлежащее качество электроэнергии, но при условии, что отклонения не превышают 35%.

https://youtube.com/watch?v=8Zt8B45-T9k

Проблемы качества электроэнергии и новые пути их решения

Вопросы, относящиеся к качеству электроэнергии, в наше время являются предметом особой озабоченности. Широкое распространение электронных устройств, включающих в себя оборудование информационных технологий, силовую электронику (регулируемые приводы, программируемые логические контроллеры, энергоэффективные осветительные устройства), приводят к полному изменению природы электрических нагрузок. Такие нагрузки одновременно являются и главными причинами, и главными объектами воздействия проблем качества электроэнергии. Из-за своей нелинейности эти нагрузки приводят к искажению формы напряжения.

Кроме технического прогресса одной из основных тенденций развития мировой экономики является глобализация, при этом показатели рентабельности многих видов деятельности имеют тенденцию к снижению. Высокая чувствительность подавляющего большинства потребителей (промышленных, сферы услуг и даже коммунальных) к проблемам качества электроэнергии приводит к тому, что наличие электроэнергии с высоким качеством становится основным фактором конкурентоспособности в любой сфере деятельности. Наиболее критичными областями являются непрерывные технологические циклы и сфера информационно-технологических услуг. Возникновение нарушений может привести к огромным финансовым потерям и последующему снижению производительности и конкурентоспособности.

Хотя поставщики электроэнергии прилагают соответствующие усилия, многим потребителям необходимо более высокое качество электроэнергии, чем то, которое могут обеспечить современные электрические сети. Это означает, что должны приниматься определённые меры для достижения более высоких уровней качества электроэнергии.

Наиболее распространённые виды проблем качества электроэнергии приведены в Таблице № 1.

Что такое качество электроэнергии?

Термин «качество электроэнергии» в МЭК определяется как набор параметров, определяющих параметры качества электроэнергии, доставляемой потребителю в нормальных условиях работы, с точки зрения бесперебойности и характеристик напряжения (симметрии, частоты, амплитуды, формы). В стандарте IEEE Std. 1100-1999 качество электроэнергии определяется как «реализация питания и заземления электронного оборудования способом, который обеспечивает нормальную работу этого оборудования и совместим с электрической сетью и другим подключенным оборудованием».

Как следует из этих определений, понятие «качество электроэнергии» включает в себя все аспекты энергоснабжения. Составляющие качества электроэнергии могут быть разделены на 3 категории: стабильность напряжения, бесперебойность подачи питания и форма напряжения. На основании этой классификации определены два критерия оценки качества электроэнергии и соответствующие конфигурации центра управления качеством

Первый из них предполагает большую важность стабильности амплитуды напряжения, то есть предотвращение провалов и выбросов напряжения, повышенного и пониженного напряжения. Второй критерий предполагает наибольшую важность бесперебойности электроснабжения

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий