Время-токовая характеристика

Автоматы ABB 2Р (1Р+N) или 1P? Двухполюсные или однополюсные?

Разница в схеме подключения однополюсных автоматов ABB 1Р или 2Р (1Р+N) к УЗО существенная. В первом случае экономим бюджет и место в щитке, но получаем трудности с отысканием кабельной линии, из-за которой отключается УЗО. Во втором случае, больше затрат, но выше безопасность (время отыскания утечки тока) и более понятная схема, при которой определить кабельную линию из-за которой срабатывает УЗО сможет необученный человек, например, жена)).

Я рассмотрю и покажу вам оба варианта с подключением автоматов к групповому УЗО. Как найти линию или автомат из-за которой вырубает УЗО. А вы уже сами решайте, какие будете использовать автоматы ABB 1Р или 2Р (1Р+N) для группового.

Вариант №1. Схема квартирного щитка, где к УЗО подключены три автомата 1Р.

Предположим утечка тока у нас на кабельной линии №3, УЗО отключается. Как определить на какой линии из 3-х у нас утечка? Самое первое, что необходимо сделать при любом варианте схемы (1Р или 2Р) — это вытащить вилки всех бытовых приборов из розеток на этих кабельных линиях, и попробовать включить УЗО. Утечка тока может быть вызвана нарушением изоляции прибора. Если это не помогает, тогда идем к щитку;

  • Необходимо снять напряжение со щитка, отключив вводной автомат или рубильник, чтобы не задеть токоведущие части в электрощите;
  • Отсоединить нулевые рабочие провода кабелей с клеммника “N”, к которому подключены нулевые провода кабелей № 1, 2, 3 (для каждого УЗО — свой отдельный клеммник для автоматов;
  • Присоединяем к клеммнику “N” нулевой провод кабеля №1;
  • Включаем вводной автомат в электрощите, УЗО и автоматический выключатель кабеля №1;
  • Если УЗО не отключается, снова отключаем питание в квартирном щитке и УЗО;
  • Присоединяем рабочий ноль кабеля №2 к клеммнику “N” и включаем вводной автомат, УЗО и автомат кабеля №2;
  • Если УЗО не отключается, снова отключаем питание в квартирном щитке и УЗО;
  • Присоединяем ноль последнего кабеля №3 к клеммнику “N“;
  • УЗО отключится (утечка у нас на кабеле №3);
  • Отключаем снова питание электрощита;
  • Отсоединяем нулевой провод кабеля №3 с клеммника “N и отключаем автомат №3”;
  • Включаем питание щита, включаем автоматы № 1 и 2, чтобы работали приборы и освещение от этих линий;
  • Ищем, где у нас утечка на кабеле № 3 (осматриваем распаечные коробки, проверяем соединения проводов, контакты розеток и выключателей).

Если кратко, то необходимо отсоединить нулевые провода автоматов, групповое УЗО которых отключается. И поочередно их присоединять обратно на клеммник, включая при этом соответствующий автомат. На каком автомате отключится УЗО, значит там утечка.

Вариант №2. Схема подключения двухполюсных автоматов 2P (1P+N) к УЗО.

Этот вариант, конечно, проще. Можно не вынимать вилки из розеток, не снимать пластроны щитка и не отключать полностью напряжение. Достаточно:

  • Отключить все автоматы 2Р, соответствующего УЗО;
  • Включать их по очереди;
  • При включении какого автомата у нас отключиться УЗО, там и утечка тока.

На схеме примера, нужно отключить все автоматы Q 1,2,3,4, включить УЗО, и включить сначала автомат Q1, затем Q2, далее автомат Q3, и наконец Q4, при котором УЗО отключится. Отключаем автомат Q4, включаем УЗО и автоматы ABB Q1,2,3 и ищем на линии Q4 повреждение (утечку).

Какой из этих вариантов вам более приемлим решать только вам. Первый вариант, как я уже писал выше, экономный. Второй вариант — наиболее безопасный с быстрой схемой восстановления электроснабжения.

Подключение автоматов ABB S200

Автоматы ABB S200 имеют очень удобную конструкцию для подключения, не только супротив бюджетной SH200, но и других производителей автоматов Шнайдер Электрик, Хагер и т.д. У автоматов ABB S200 есть по два контакта для подключения кабеля, как сверху, так и снизу, что позволяет в прямоугольные клеммы подключить специальную гребенку (шину) для автоматов, а во второй контакт подключить провод. Затягиваются контакты одним винтом.

Подавать питание на автоматы ABB S200 можно, как на верхние контакты (стандартный вариант), так и на нижние.

Правильно выбрать автомат для защиты от перегруза и токов короткого замыкания, поможет вам следующая памятка.

Спасибо за внимание

Характеристики автоматических выключателей

Существует еще одна классификация автоматов – по их характеристикам. Этот показатель обозначает степень чувствительности защитного прибора к превышению величины номинального тока. Соответствующая маркировка покажет, насколько быстро в случае возрастания тока среагирует устройство. Одни типы АВ срабатывают моментально, в то время как другим на это понадобится определенное время.

Существует следующая маркировка устройств по их чувствительности:

  • A. Выключатели этого типа наиболее чувствительны и на повышение нагрузки реагируют мгновенно. В бытовые сети их практически не устанавливают, защищая с их помощью цепи, в которые включено высокоточное оборудование.
  • B. Эти автоматы срабатывают при возрастании тока с незначительной задержкой. Обычно они включаются в линии с дорогостоящими бытовыми приборами (жидкокристаллические телевизоры, компьютеры и другие).
  • C. Такие аппараты – самые распространенные в бытовых сетях. Отключение их происходит не сразу после повышения силы тока, а через некоторое время, что дает возможность ее нормализации при незначительном перепаде.
  • D. Чувствительность этих приборов к возрастанию тока самая низкая из всех перечисленных типов. Их чаще всего устанавливают в щитках на подходе линии к зданию. Они обеспечивают подстраховку квартирных автоматов, и если те по какой-то причине не срабатывают, отключают общую сеть.

Значение различных характеристик автоматов

Автоматы – это приборы, обеспечивающие защиту электрической цепи от влияния тока большой величины, который может послужить причиной повреждения электроцепи. Эти приборы также называют автоматическими выключателями.

Электроны, идущие мощным потоком, могут спровоцировать перегрев кабеля, что часто приводит к расплавлению его или загоранию изоляционных материалов, также подобные сбои могут испортить быттехнику. В таких случаях необходимо провести быстрое обесточивание сети, чтобы избежать пожара.

Потому в Правилах устройства электроустановок утвержден пункт, согласно которому запрещено использовать электрическую сеть, не имеющую защитных автоматов.

Автоматические выключатели различают по различным характеристикам, но основным параметром считается времятоковая. Мы попытаемся разобраться, что же это такое, и на какие категории делят автоматы, защищающие электросеть.

Как работают автоматы?

Задача у автомата одна – рассчитать момент, когда появится повышенное содержание электронов и обеспечить обесточивание электросети до того, как произойдет непоправимое повреждение кабеля и различных приборов, подключенных к сети. Выделяют два вида токов, несущих такую опасность:

  • токи перегрузки, обусловленные одновременным подключением приборов большой мощности, либо неисправностью таковых, из-за чего линия не выдерживает нагрузку;
  • сверхтоки, возникающие в результате короткого замыкания, когда проводники, которые не должны подключаться вместе, соединяются.
Автоматический выключатель - номинал и токовая характеристикаАвтоматический выключатель — номинал и токовая характеристика

Следует знать, что при наличии токов перегрузки часто не нужно отключать линию от питания, ведь в основном поток электронов самостоятельно приходит в нормальное состояние. В свою очередь, каждый автоматический выключатель срабатывает при повышении силы электротока до определенного уровня перегрузки, то есть при незначительном превышении обесточивание не будет происходить.

При коротком замыкании автомат срабатывает мгновенно, ведь потоки электронов при нем на порядок превышают норму. При этом работает соленоид с сердечником, воздействующий на систему отключения.

Как же работает автомат, если поток электронов очень мощный, а короткого замыкания не произошло? Все зависит от класса автомата, который в свою очередь зависит от времятоковой характеристики. Для бытовых электросетей используют автоматы класса B, C, D.

Основное отличие между этими классами состоит в отношении кратности тока к номиналу прибора. Класс автомата обычно проставляют латинской буквой на корпусе прибора перед цифрой, обозначающей номинальный ток.

Категории автоматов

Автоматы МА не содержат теплового расцепителя, их подключают к различным видам электромоторов и особо мощных приборов, чаще всего на производстве.

Автоматы класса А относятся к высокочувствительным агрегатам, в них обесточивание начинается при превышении силы тока более чем на тридцать процентов. Достаточно половины сотой секунды чтобы отключить сеть, если электрический ток превышает норму на сто процентов, в прочих случаях для обесточивания требуется 20-30 секунд.

Выбор автоматического выключателя. Часть 1Выбор автоматического выключателя. Часть 1

Такой автомат подключают к электролинии, для которой нельзя допускать даже небольшие перегрузки, например, это цепи с полупроводниками.

Автоматы класса В чуть менее чувствительны, они сработают при перегрузке в 200%, для обесточивания им понадобится всего пара секунд. Такой класс автоматических выключателей используют в бытовых помещениях, где повышение электротока практически не происходит, либо является незначительным.

Автоматы класса С также применяются в бытовых электросетях. Для их срабатывания поток электронов должен быть выше нормы в пять раз. А срабатывает автомат через полторы секунды. Как правило, такие автоматические выключатели ставят на входе в сеть и защищают они всю сеть, в отличие от автоматов класса В, которые ставят на ветки электросети, куда подключается лишь определенное количество розеток.

Автоматы класса D рассчитаны на высокие токоперегрузки, так они будут обесточивать сеть, если номинал будет превышен в десять раз. И сработает такой автомат уже через 0,4 секунды с момента начала перегрузки.

Автоматические выключатели категории D применяют в качестве страховки в сетях зданий либо при подключении электрических моторов.

Теперь вы сможете сориентироваться, какие автоматы стоит приобрести для защиты электросети, учитывая целевое назначение приборов и особенности здания/помещения, в которых они будут установлены.

Как работают автоматические выключатели

Работа автоматического выключателя в различных режимах происходит по простому принципу.

Нормальный режим

Во время взвода рычага управления выключателем приводится в движение механизм взвода и расцепления, тем самым осуществляя коммутацию силовых контактов.
После коммутации ток протекает от питающего провода или кабеля, подключенного к винтовому зажиму. Через этот зажим по контактам проходит ток, причем сначала по неподвижным, а затем и по подвижным.

Короткое замыкание

В данном режиме электромагнитный расцепитель автоматического выключателя должен произвести мгновенное отключение нагрузки. Принцип действия заключается в следующем: при значительном превышении номинального показателя, протекающего через обмотку электромагнита, возникает мощное магнитное поле, которое тянет вниз якорь с подвижным контактом.

Последствия КЗ

Якорь в свою очередь надавливает на рычажок спускового механизма, в результате чего происходит отключение нагрузки.

Перегрузка

За защиту от перегрузки отвечает тепловой расцепитель. Принцип работы данного расцепителя заключается в следующем: когда энергия, протекающая через биметаллическую пластину, становится равной или больше установленного значения, пластина нагревается и постепенно изгибается.

Обратите внимание! Достигнув определенного угла изгиба, она надавливает своим кончиком на рычажок спускового механизма. Таким образом автомат отключается

Основные параметры автоматических выключателей

Автоматический выключатель – это электрический коммутационно-защитный аппарат, предназначенный для автоматического размыкания электрической цепи при аварийных ситуациях, а также для нечастых оперативных включений и отключений электрических цепей при нормальных условиях работы.

К основным параметрам автоматических выключателей относятся:

– номинальное напряжение автоматического выключателя;

– номинальный ток автоматического выключателя;

– номинальный ток максимального расцепителя;

– уставка по току срабатывания максимального расцепителя;

– уставка по времени срабатывания максимального расцепителя (только для селективных автоматов)

Номинальным током АВ считается ток, на который рассчитаны его главные контакты в продолжительном режиме работы. Для отключения токов КЗ в АВ устанавливают максимальные расцепители (реле максимального тока). Номинальные токи максимальных расцепителей могут отличаться от номинальных токов АВ. Уставкой по току срабатывания максимального расцепителя считается ток, при котором максимальный расцепитель отключит автомат. Уставка по току срабатывания АВ обычно приводится в относительных единицах. Уставка по времени срабатывания максимального расцепителя это время между моментом обнаружения короткого замыкания и моментом отключения автоматического выключателя.

5. Нейманівська й гарвардська архітектури засобів обчислювальної техніки їхньої особливості й області застосування.

Архитектура фон Неймана — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», они основаны на следующих принципах:

· Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

· Принцип адресуемости памяти. Основная память структурно состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

· Принцип последовательного программного управления. Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

· Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Такая архитектура реализуется в микропроцессорах, которые используются в вычислительных средствах общего назначения от комплексов рекордной производительности до ноутбуков.

Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти. Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность является значительно меньшей, чем скорость, с которой процессор может работать.

Гарвардская архитектура — архитектура ЭВМ, отличительными признаками которой являются:

1. Хранилище инструкций и хранилище данных представляют собой разные физические устройства.

2. Канал инструкций и канал данных также физически разделены.

В Гарвардской архитектуре характеристики устройств памяти для инструкций и памяти для данных не требуется иметь общими. В частности, ширина слова, тайминги, технология реализации и структура адресов памяти могут различаться. В некоторых системах инструкции могут храниться в памяти только для чтения, в то время как для сохранения данных обычно требуется память с возможностью чтения и записи. В некоторых системах требуется значительно больше памяти для инструкций, чем памяти для данных, поскольку данные обычно могут подгружатся с внешней или более медленной памяти. Такая потребность увеличивает битность (ширину) шины адреса памяти инструкций по сравнению с шиной адреса памяти данных.

Гарвардская архитектура используется в ПЛК и микроконтроллерах, таких, как Microchip PIC, Atmel AVR, Intel 4004, Intel 8051 и обеспечивает большее быстродействие и лучшее соответствие специфике решаемых задач.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9019 – | 7253 – или читать все.

93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock! и обновите страницу (F5)очень нужно

{SOURCE}

Время-токовая характеристика (ВТХ)

При помощи такого графического отображения можно получить наглядное представление, при каких условиях будет активирован механизм отключения питания цепи (см. рис. 2). На графике, в качестве вертикальной шкалы отображается время, необходимое для активации АВ. Горизонтальная шкала показывает соотношение I/In.

Допустимое превышение штатного тока, определяет тип время-токовых характеристик для расцепителей в приборах, производящих автоматическое выключение. В соответствии с действующими нормативом (ГОСТ P 50345-99), каждому виду присваивается определенное обозначение (из латинских литер). Допустимое превышение определяется коэффициентом k=I/In, для каждого вида предусмотрены установленные стандартом значения (см. рис.3):

  • «А» — максимум – троекратное превышение;
  • «В» — от 3 до 5;
  • «С» — в 5-10 раз больше штатного;
  • «D» — 10-20 кратное превышение;
  • «К» — от 8 до 14;
  • «Z» — в 2-4 больше штатного.

Заметим, что данный график полностью описывает условия активации соленоида и термоэлемента (см. рис.4).

Учитывая все вышесказанное, можно резюмировать, что основная защитная характеристика у АВ обусловлена время-токовой зависимостью.

Перечень типовых время-токовых характеристик.

Определившись с маркировкой, перейдем к рассмотрению различных типов приборов, отвечающих определенному классу в зависимости от характеристик.

Характеристика типа «A»

Тепловая защита АВ этой категории активируется, когда отношение тока цепи к номинальному (I/In) превысит 1,3. При таких условиях отключение произойдет через 60 минут. По мере дальнейшего превышения номинального тока время отключения сокращается. Активация электромагнитной защиты происходит при двукратном превышении номинала, скорость срабатывания – 0,05 сек.

Данный тип устанавливаются в цепях не подверженных кратковременным перегрузкам. В качестве примера можно привести схемы на полупроводниковых элементах, при выходе из строя которых, превышение тока незначительное. В быту такой тип не используется.

Характеристика «B»

Отличие данного вида от предыдущего заключается в токе срабатывания, он может превышать штатный от трех до пяти раз. При этом механизм соленоида гарантированно активируется при пятикратной нагрузке (время обесточивания – 0,015 сек.), термоэлемент – трехкратной (на отключение понадобиться не более 4-5 сек.).

Такие виды устройств нашли применение в сетях, для которых не характерны высокие пусковые токи, например, цепи освещения.

Характеристика «C»

Это наиболее распространенный тип, его допустимая перегрузка выше, чем у двух предыдущих видов. При пятикратном превышении штатного режима срабатывает термоэлемент, это схема, отключающая электропитание в течение полутора секунд. Механизм соленоида активируется, когда перегрузка превысит норму в десять раз.

Данные АВ рассчитаны на защиту электроцепи, в которой может возникнуть умеренный пусковой ток, что характерно для бытовой сети, для которой характерна смешанная нагрузка. Покупая устройство для дома, рекомендуется остановить свой выбор на этом виде.

Характеристика «D»

Для АВ такого типа характерны высокие перегрузочные характеристики. А именно, десятикратное превышение нормы для термоэлемента и двадцатикратное для соленоида.

Применяются такие приспособления в цепях с большими пусковыми токами. Например, для защиты пусковых устройств асинхронных электродвигателей. На рисунке 9 показано два прибора этой группы (a и b).

Характеристика «K»

У таких АВ активация механизма соленоида возможна при превышении токовой нагрузки в 8 раз, и гарантированно произойдет, когда будет двенадцати кратная перегрузка штатного режима (восемнадцати кратное для постоянного напряжения). Время отключения нагрузки не более 0,02 сек. Что касается термоэлемента, то его активация возможна при превышении 1,05 от штатного режима.

Сфера применения – цепи с индуктивной нагрузкой.

Характеристика «Z»

Данный тип отличается небольшим допустимым превышением штатного тока, минимальная граница — двух кратная от штатной, максимальная – четырех кратная. Параметры срабатывания термоэлемента, такие же, как и у АВ с характеристикой К.

Этот подвид применяется для подключения электронных приборов.

Характеристика «MA»

Отличительная особенность этой группы – не используется термоэлемент для отключения нагрузки. То есть прибор предохраняет только от КЗ, этого вполне достаточно, чтобы подключить электрический двигатель. На рисунке 9 показано такое приспособление (с).

Принцип действия автоматического выключателя

Теперь разберемся, как работает автомат защиты сети. Подключение его осуществляется подъемом вверх рукоятки управления. Чтобы отключить АВ от сети, рычаг опускают вниз.

Когда автомат защитный электрический функционирует в обычном режиме, то электрический ток при поднятой вверх рукоятке управления поступает к аппарату через подсоединенный к верхней клемме кабель питания. Поток электронов идет к неподвижному контакту, а от него – к подвижному.

Затем по гибкому проводнику ток поступает на соленоид электромагнитного расцепителя. С него по второму гибкому проводнику электричество идет к биметаллической пластине, входящей в тепловой расцепитель. Пройдя по пластине, поток электронов через нижнюю клемму уходит в подключенную сеть.

Особенности работы теплового расцепителя

При превышении током цепи, в которой установлен автомат защиты, номинала устройства возникает перегрузка. Поток электронов высокой мощности, проходя через биметаллическую пластину, оказывает на нее термическое воздействие, делая более мягкой и заставляя выгнуться в сторону отключающего элемента. При вступлении последнего в контакт с пластиной происходит срабатывание автомата, и подача тока в цепь прекращается. Таким образом, тепловая защита позволяет не допустить чрезмерного нагревания проводника, которое может привести к расплавлению изоляционного слоя и выходу проводки из строя.

Нагревание биметаллической пластины до такой степени, чтобы она изогнулась и вызвала срабатывание АВ, происходит в течение определенного времени. Оно зависит от того, насколько величина тока превышает номинал автомата, и может занять как несколько секунд, так и час.

Срабатывание теплового расцепителя происходит в случае превышения током цепи номинала автомата как минимум на 13%. После остывания биметаллической пластины и нормализации величины текущего тока защитное устройство можно будет снова включить.

Если воздух в помещении, где установлен аппарат, имеет высокую температуру, то пластина нагреется до отключающего предела быстрее, чем обычно, и может сработать даже при незначительном возрастании тока. И наоборот, если в доме холодно, нагревание пластинки будет происходить медленнее, и время до отключения цепи увеличится.

Срабатывание теплового расцепителя, как было сказано, требует определенного времени, в течение которого ток цепи может прийти в норму. Тогда перегрузка исчезнет, и отключения устройства не произойдет. Если же величина электротока не снижается, автомат обесточивает цепь, предотвращая оплавление изоляционного слоя и не допуская возгорания кабеля.

Причиной перегрузки чаще всего становится включение в цепь устройств, суммарная мощность которых превышает расчетную для конкретно взятой линии.

Нюансы электромагнитной защиты

Электромагнитный расцепитель предназначен для защиты сети от короткого замыкания и по принципу работы отличается от теплового. Под действием сверхтоков КЗ в соленоиде возникает мощное магнитное поле. Оно сдвигает в сторону сердечник катушки, который размыкает силовые контакты защитного устройства, воздействуя на механизм расцепителя. Питание линии прекращается, благодаря чему исчезает опасность возгорания проводки, а также разрушения замкнувшей установки и автоматического выключателя.

Поскольку в случае КЗ в цепи происходит мгновенное возрастание тока до величины, способной за короткое время привести к тяжелым последствия, срабатывание автомата под воздействием электромагнитного расцепителя происходит за сотые доли секунды. Правда, при этом ток должен превысить номинал АВ в 3 и более раза.

Наглядно про автоматические выключатели на видео:

Автоматические выключатели - устройство и принцип работыАвтоматические выключатели — устройство и принцип работы

Дугогасительная камера

Когда контакты цепи, через которую протекает электрический ток, размыкаются, между ними возникает электрическая дуга, мощность которой прямо пропорциональна величине сетевого тока. Она оказывает на контакты разрушающее воздействие, поэтому для их защиты в состав устройства входит дугогасительная камера, представляющая собой набор пластинок, установленных параллельно друг другу.

При контакте с пластинами происходит дробление дуги, в результате чего снижается ее температура и происходит затухание. Газы, возникшие при появлении дуги, через специальное отверстие удаляются из корпусной части защитного устройства.

Назначение и разновидности автоматов

трех видов

Тепловой служит для защиты от перегрузок в сети, представляет собой биметаллическую пластину теплового реле. При превышении значения номинального тока она нагревается, расширяется и выгибается, толкая рычаг, который разрывает соединение.

Второй тип – электромагнитный. Это система из катушки, сердечника и пружины, предназначенная для защиты от короткого замыкания. При резком увеличении силы тока, проходящего через катушку, меняется магнитное поле, это в свою очередь меняет положение сердечника, приводя к сжатию пружины и срабатыванию рычага.

Есть и универсальный вариант — комбинированный. Он объединяет в себе оба вышеописанных механизма, защищая одновременно и от перегрузок, и от скачков напряжения.

По конструкции автоматические выключатели разделяются на несколько разновидностей в зависимости от силы тока, на которую они рассчитаны:

  • воздушный – от 800 до 6300 А;
  • в литом корпусе – от 10 до 2500 А;
  • модульный – от 0,5 до 125 А.

Есть разделение автоматических выключателей и по времени срабатывания. Это характеристика, которая определяет скорость расцепления. В зависимости от её значения выделяют опять же три типа. Первый – нормальные (0,02-0,1 с), далее идут селективные (до 1 с) и быстродействующие с токоограничивающим эффектом (до 0,05 с). Последние являются особо долговечными и эффективными. Такой автомат срабатывает перед самой перегрузкой, до сильного повышения тока. Для выбора по данному параметру необходимо учесть силу перегрузок, которые могут возникнуть, и их частоту. Чем они выше и чем чаще происходят, тем быстрее устройство должно на них реагировать.

От чего защищает УЗО

УЗО функционирует в одно- и двухфазных сетях переменного тока на 220 и 380 вольт. Сами приборы помещаются в корпусах из негорючего ПВХ и способны пропускать через себя различные номинальные токи. Многие люди путают устройства с защитными автоматами и не до конца представляют себе, от чего защищает УЗО. Между тем, функции данного прибора довольно простые.

Иногда случается так, что оказываются поврежденными конструктивные элементы приборов и оборудования, нарушена целостность изоляции провода в электрической сети. В подобных ситуациях возникает утечка тока, способная вызвать поражение человека, привести к возгоранию на поврежденных участках. Чтобы этого не произошло, УЗО буквально за доли секунды отключает такие участки, предотвращая поражение током или пожар.

дифференциальные автоматы

Конструкция этих устройств очень простая. Она состоит из дифференциального трансформатора, измеряющего токи утечки, пускового органа и механизма, расцепляющего силовые контакты.

Принцип работы автоматического выключателя

АВ (автоматический выключатель) призван защитить от перегрузки все приборы, подключенные в электрической цепи непосредственно после него самого.

Если он выбран неправильно, то должным образом работать он не сможет. Так, например, если применить электрический кабель, который рассчитан на 4-5 ампер, и пустить по нему 20-30, то такой автомат не выключится сразу, а будет ждать, пока изоляция не оплавится и не случится короткое замыкание. Тогда он выключится. Но это не то, к чему должна привести правильная работа автоматического выключателя

Поэтому важно учитывать заранее, ставя автомат на 16 ампер, сколько кВт он выдержит при наличии проводов определенного сечения и максимальной рабочей нагрузки

В идеале, он должен выключиться сразу, как только почувствовал перегрузку. Тогда и провода останутся в порядке, и подключенное оборудование не перегорит.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий